SQRT Function

Computes the square root of the input parameter. Input value can be a Decimal or Integer literal or a reference to a column containing numeric values. All generated values are non-negative.

Basic Usage

Numeric literal example:

derive value:SQRT(25 )

Output: Generates a column containing the square root of 25, which is 5.

Column reference example:

derive value:SQRT(MyValue) as: 'sqroot_MyValue'

Output: Generates the new sqroot_myValue column containing the square root of the values of the MyValue column.


derive value:SQRT(numeric_value)

ArgumentRequired?Data TypeDescription
numeric_valueYstring, decimal, or integerName of column or Decimal or Integer literal to apply to the function

For more information on syntax standards, see Language Documentation Syntax Notes.


Name of the column or numeric literal whose values are used to compute the square root.

NOTE: Negative input values generate null output values.

  • Missing input values generate missing results.
  • Literal numeric values should not be quoted.
  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?Data TypeExample Value
YesString (column reference) or Integer or Decimal literal25


Example - Pythagorean Theorem

The following example demonstrates how the POW and SQRT functions work together to compute the hypotenuse of a right triangle using the Pythagorean theorem.

  • POW - X Y . In this case, 10 to the power of the previous one. See POW Function .
  • SQRT - computes the square root of the input value. See SQRT Function.

The Pythagorean theorem states that in a right triangle the length of each side (x,y) and of the hypotenuse (z) can be represented as the following:

z2 = x 2 + y 2

Therefore, the length of z can be expressed as the following:

z = sqrt(x 2 + y 2 )


The dataset below contains values for x and y:



You can use the following transform to generate values for z2.

NOTE: Do not add this step to your recipe right now.

derive value:(POW(x,2) + POW(y,2)) as:'Z'

You can see how column Z is generated as the sum of squares of the other two columns. Now, wrap the value computation in a SQRT function:

derive value:SQRT((POW(x,2) + POW(y,2))) as: 'Z'



Send feedback about...

Google Cloud Dataprep Documentation