ISNULL Function

The ISNULL function tests whether a column of values contains null values. For input column references, this function returns true or false.

Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.

Basic Usage

isnull(Qty)

Output: Returns true if the value in the Qty column is null.

Syntax and Arguments

isnull(column_string)

ArgumentRequired?Data TypeDescription
column_stringYstringName of column or string literal to be applied to the function

For more information on syntax standards, see Language Documentation Syntax Notes.

column_string

Name of the column or string literal to be tested for null values.

  • Missing literals or column values generate missing string results.
  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?Data TypeExample Value
YesString literal or column referencemyColumn

Valid data type strings:

When referencing a data type within a transform, you can use the following strings to identify each type:

NOTE: In Wrangle transforms, these values are case-sensitive.

NOTE: When specifying a data type by name, you must use the String value listed below. The Data Type value is the display name for the type.

Data TypeString
String'String'
Integer'Integer'
Decimal'Float'
Boolean'Bool'
Social Security Number'SSN'
Phone Number'Phone'
Email Address'Emailaddress'
Credit Card'Creditcard'
Gender'Gender'
Object'Map'
Array'Array'
IP Address'Ipaddress'
URL'Url'
HTTP Code'Httpcodes'
Zip Code'Zipcode'
State'State'
Date / Time'Datetime'

Examples

Tip: For additional examples, see How-to Guides.

Example - Type check functions

This example illustrates how various type checking functions can be applied to your data.

Source:

Some source values that should match the State and Integer data types:

StateQty
CA10
OR-10
WA2.5
ZZ15
ID
4

Transformation:

Invalid State values: You can test for invalid values for State using the following:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula ISMISMATCHED (State, 'State')

The above transform flags rows 4 and 6 as mismatched.

NOTE: A missing value is not valid for a type, including String type.

Invalid Integer values: You can test for valid matches for Qty using the following:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula (ISVALID (Qty, 'Integer') && (Qty > 0))
Parameter: New column name 'valid_Qty'

The above transform flags as valid all rows where the Qty column is a valid integer that is greater than zero.

Missing values: The following transform tests for the presence of missing values in either column:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula (ISMISSING(State) || ISMISSING(Qty))
Parameter: New column name 'missing_State_Qty'

After re-organizing the columns using the move transform, the dataset should now look like the following:

StateQtymismatched_Statevalid_Qtymissing_State_Qty
CA10falsetruefalse
OR-10falsefalsefalse
WA2.5falsefalsefalse
ZZ15truetruefalse
ID falsefalsetrue
4falsetruetrue

Since the data does not contain null values, the following transform generates null values based on the preceding criteria:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula
Parameter: New column name 'status'

You can then use the ISNULL check to remove the rows that fail the above test:

Transformation Name Filter rows
Parameter: Condition Custom formula
Parameter: Type of formula Custom single
Parameter: Condition ISNULL('status')
Parameter: Action Delete matching rows

Results:

Based on the above tests, the output dataset contains one row:

StateQtymismatched_Statevalid_Qtymissing_State_Qtystatus
CA10falsetruefalseok