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1 Background

1.1 Introduction
As part of  its bid to become the Plan Processor for the Consolidated 
Audit Trail (CAT) initiative,1 FIS developed a prototype of  the principal 
order linkage use case specified by CAT’s requirements. In May of  
2015, FIS detailed the results from the initial version of  this prototype, 
which was based broadly on Hadoop and Google Cloud Bigtable.2 
Since then, Google Cloud Dataflow has gone GA.3 Here, FIS outlines 
its experience integrating Dataflow and BigQuery into its original 
prototype assets, and contrasts the relative observations of  the two 
solution architectures from both development practices and runtime 
performance perspectives. 
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1.2 Reconstructing the market
While the principal functional requirements4 of  the linkage algorithm 
have not changed from 2015, several major components of  the MRP’s 
overall solution architecture have been replaced. Namely, the job 
orchestration and execution capabilities that formerly employed custom 
Java code running within Hadoop5 have been ported to pipelines 
developed using the Google Cloud Dataflow SDK, and executed 
within the Google Cloud Dataflow runtime environment. The benefits 
that Cloud Dataflow offers developers are manifold; among them are: 
reduced infrastructure administration, automatic scaling, and an SDK 
with native support for both batch and streaming modes. Additionally, 
linkage results produced by the pipeline are now published to a Google 
BigQuery dataset, allowing for the visualization and analysis of  derived 
lifecycle data immediately after processing.

1	� For more information on SEC rule 613, see http://www.catnmsplan.com
2	� Palmer et al. (2015) “Scaling to Build the Consolidated Audit Trail:  A Financial Services Application of Google Cloud Bigtable”
3	� “Google Cloud Dataflow and Cloud Pub/Sub Reach General Availability” – http://www.programmableweb.com/news/google-cloud-dataflow-and-cloud-pubsub-reach-general-

availability/2015/08/18
4	� SEC Rule 613 (Consolidated Audit Trail) – https://www.sec.gov/divisions/marketreg/rule613-info.htm
5	� http://hadoop.apache.org/
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The FIS Market Reconstruction Platform (MRP) is a market surveillance and forensics utility designed for the daily ingestion, linkage and analytics 
of  U.S. equity and equity options market events over multi-year periods. In May of  2015, FIS’ Advanced Technology group (formerly SunGard) 
released a white paper detailing its experiences using Google Cloud Bigtable in prototyping the MRP. In the months that followed, Google opened 
several other services within its Cloud Platform suite to general availability (GA), among them Google Cloud Dataflow. The solution architecture 
is revised to include both Cloud Dataflow and Google’s BigQuery service in addition to Bigtable. With the combination again considered in 
the context of  the MRP requirements, we conducted additional experiments measuring the speed and scalability of  the revised architecture.  
We have found that while it is imperative that engineers adopt specific approaches that capitalize upon cloud and parallel computing paradigms, 
employing these services together does yield the potential for extraordinary computing performance.

http://www.catnmsplan.com
http://www.programmableweb.com/news/google-cloud-dataflow-and-cloud-pubsub-reach-general-availability/2015/08/18
http://www.programmableweb.com/news/google-cloud-dataflow-and-cloud-pubsub-reach-general-availability/2015/08/18
https://www.sec.gov/divisions/marketreg/rule613-info.htm
http://hadoop.apache.org/
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Figure 1: Dataflow Pipeline: Execution Graph and Metrics 

1.2.1 Message ingestion
The ingestion component of  the Dataflow processing pipeline takes 
input from synthetic Financial Information eXchange (FIX) protocol 
messages that reside in flat files within Google Cloud Storage, and 
performs syntax and structural validations upon them. After validation, 
specific FIX tag values are extracted from the submission files and 
loaded into Cloud Bigtable.6 As a durable, distributed and shared 
memory repository, Bigtable is used to maintain a consistent, prevailing 
state of  the trading session’s order lifecycle graphs.

One of  the MRP’s operational constraints is that order event data can 
arrive from many disparate, independent market participants – with no 

chronological guarantee of  arrival time, and therefore, no guarantee of  
processing order. When any individual event is processed, a complete 
end-to-end order lifecycle linkage will not be immediately possible if   
its subsequent or prior lifecycle events have not arrived. 

Dataflow provides exactly once processing within the pipeline, yet 
side effects, like a write to Bigtable may be repeated unless managed 
properly. In order to parallelize event graph generation and engineer 
resiliency to individual worker failure,7 Bigtable is continually updated 
with the results of  all worker processing. That is, for any given event 
being evaluated within a Dataflow pipeline, all worker output is persisted 
to Bigtable.8 If  the same event happens to be processed multiple times 

6	� For example: 37 (OrderID), 54 (Side), 55 (Symbol) and 30 (LastMkt)
7	 This is discussed more in section 2.2.3

Figure 1 depicts a visualization of  the end-to-end Google Cloud Dataflow pipeline for the ingestion and linkage components, with the major 
architectural pillars detailed in the subsequent sections.
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because of  worker failure (i.e., multiple processElement()invocations 
with identical ProcessContext), then it will ultimately derive to  
an identical record within Bigtable, as opposed to creating a duplicate 
event with identical properties. 

This characteristic of  random event arrival and inevitable worker 
transience is largely what drives the need for a durable, distributed 
persistence tier. By mere virtue of  the total number of  workers that 
must be deployed to accommodate the data volumes in accordance 
with service level agreement (SLA) constraints, arbitrary worker failure 
is almost a statistical certainty.9 The platform must be resilient to these 
failures and ensure that the persistent tier is left in a consistent state at 
all times. It is in this area in particular where Bigtable’s strength becomes 
clear. By capitalizing on Bigtable’s native idempotency characteristics, 
the processing algorithms are free to be massively parallelized in their 
execution. No further synchronization points are necessary once a 
particular mutation has been confirmed by Bigtable. Using Dataflow 
and Bigtable together, system capabilities may be expressed as pure 
functions, left to execute under Dataflow’s purview with all cumulative 
progress kept consistent by Bigtable and with in-flight failures retried 
automatically.

Prior observations of  this stage indicated that the ingestion process 
places high demand upon I/O capacity. As in most platforms that 
scale hardware resources horizontally, meeting the demand for a 
particular processing SLA is achieved by allocating additional segments 
of  the input data universe across more worker nodes.10 The ingestion 
subsystem of  this latest testing effort, originally developed using 
the HBase API and deployed with Hadoop, was ported to use the 
abstractions and facilities of  the Cloud Dataflow SDK (now Apache 
Beam) and the Google Cloud Dataflow runtime environment.11 

In contrast to the combination of  Hadoop and HBase API originally 
used, applying the Dataflow SDK and cloud runtime environment to 
the workload yields several clear advantages for development teams. 
These include: 

•	 Decreased infrastructure management footprint

•	 �Automatic scaling of  worker nodes based upon velocity  
of  input data

•	 �Additional diagnostics and insight into worker operations via  
the Google Cloud Console

Bigtable’s fundamental column-oriented model means that mapping 
normalized relational schemas one-to-one is neither practical nor 
recommended. Instead, Bigtable employs the concept of  “column 
families,”12 which is fundamental to many NoSQL schema designs.13 
This means that all entity properties reside within a single table, and  
any relational joins between entities must be performed by the application 
programmer. Stylistically, entity properties tend to be self-contained in 
a single “Big” table. Table 1 illustrates the schema employed for the 
event linkage process. In principle, FIX messages are less arduous to 

persist to NoSQL-styled databases vs. relational databases, since the 
FIX data dictionaries (i.e. schemas) themselves employ quite a bit of  
nesting and relationships at the individual entity level.

For the chosen Bigtable schema, entity data and the necessary entity 
relationships are kept within separate column families. The Data column 
family contains the persisted tag values from each validated FIX message.  
The Link column family contains the information necessary to derive 
the event relationships, represented in a way that reflects the industry’s 
own mechanisms for designating counterparty relationships.14 

The ingestion process enforces valid FIX messages and subsequently 
loads the relevant FIX tag values into their respective destinations 
within the Data column family.

Validations against externally maintained datasets are also performed  
on the input FIX messages during this stage, such as validating 
that events use identical reference symbology for instruments and 
participant identifiers.

These validations generally fall into one of  three separate categories:

•	 �Structural correctness of  submission syntax (in this case, FIX 4.2)

•	 �Parent/Child event matching based on a specific property of  the 
original data (i.e. parent and child order identifiers)15 

•	 �Contextual validation, such as validating that a participant is 
recognized and that no messages are using deprecated symbology 

First, the formal correctness of  data is confirmed during ingestion, 
such as validating that the value submitted for a particular numeric  
data field is devoid of  alpha characters, and storing the result in the 
*Valid column.

8	� Specifically, the output of a ParDo’s implementation of DoFn.processElement() as defined in the Dataflow SDK
9	 Dean (2008)
10	 Palmer, et. al (2015) supra
11	� The Google Cloud Dataflow SDK was recently accepted as incubating by the Apache Foundation, and renamed to Apache Beam
12	  “Designing Your Schema” –  https://cloud.google.com/bigtable/docs/schema-design
13	�  “Column (Family) Databases” – https://ayende.com/blog/4500/that-no-sql-thing-column-family-databases
14	� CAT NMS Plan - “SRO NMS Plan Industry Call” at http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf
15	� Öhman (2013)

Column Family Columns

Data •	 Quantity
•	 Source
•	 Destination
•	 Symbol
•	 ChildSymbol
•	 SymbolValid
•	 SymbolMatch
•	 Side
•	 ChildSide
•	 SideMatch

Link •	 Parent RowKey
•	 Child RowKey
•	 Merge RowKey
•	 Grandparent ID

Error •	 Error Status

Table 1: Simplified Bigtable Schema

https://cloud.google.com/bigtable/docs/schema-design
https://ayende.com/blog/4500/that-no-sql-thing-column-family-databases
http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf
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While each non-root event is tagged with its parent Link column family, 
the same pattern is applied for the columns named CHILD_* in the 
Data family. This allows for simple data scans and parallel processing of  
event context. As each market event confirms that its children employ 
identical reference symbology, for instance, it can be confirmed that 
the whole lifecycle is predicated upon that same foundation. Since the 
information is grouped within the dedicated column family, the total 
amount of  data transferred between Bigtable and the worker nodes 
performing these operations is minimized.

This seemingly minor optimization becomes significant considering the 
sheer number of  worker routine iterations. Application programmers 
commonly demand more information from a repository than is strictly 
necessary for a particular use-case round-trip,19 but when computing 
at the petabyte scale, efficiency is crucial. To put this into perspective, 
during our 60-minute, 25 billion-record test, saving one byte per 
record is the equivalent of  reducing the overall sustained bandwidth 
requirements by nearly 56 Mbps:20 

Given a single byte per record:

Processed per second over the course of  an hour:

Converted to megabytes:

Converted to megabits per second:

 

Next, the event’s own data point is matched for equality with the child’s 
data point. A success or failure is marked in the *Match column, 
allowing for the flagging of  orphan events.

Finally, the data point might be checked against a set of  rules or an 
external system to confirm its correctness. For example, the system 
must already know participant identifiers and should be able to identify 
and flag the use of  deprecated symbology. The results of  these 
contextual checks are also stored in the *Valid column.

These types of  issues can therefore be iterated simply via queries to 
Bigtable on those Boolean columns. Additional details pertaining to the 
processing errors for that event are stored in the Error column family 
to simplify tracking and diagnostics.

1.2.2 Lifecycle construction
The output of  the lifecycle construction stage is a graph of  related 
market events that represent complete order lifecycles.16 During 
linkage, the algorithm must address the limitation of  each individual 
event possessing only a reference to its most direct parent, or a null 
reference indicating that the event represents the root of  a particular 
order lifecycle. 

Part of  the lifecycle algorithm is responsible for maintaining the “root” 
node, or genesis event, which we refer to as the “grandparent,” that 
ultimately represents the oldest ancestor of  a complete order lifecycle. 

This limitation emerges as an artifact of  current U.S. equity market 
structure: by the time an order has been filled in its entirety, the overall 
accumulation of  shares in order fulfillment will have originated from an 
indeterminate set of  individual market participants. Additionally, parent 
or child orders may be cancelled (and/or replaced) in whole or in part 
before fulfillment. Furthermore, each participant is only knowledgeable 
of, and hence can only report on, its own direct interactions with 
individual counterparties per market event. By the time an order graph 
terminates, the component shares may have been aggregated and 
disaggregated with other orders several times.17 To reconstruct the 
complete order lifecycle, a linkage strategy commonly referred to as the 
“daisy chain” model is used.18 

16	� “Understanding Order Execution” – http://www.investopedia.com/articles/01/022801.asp provides an introduction to order execution logistics from a retail trader’s perspective
17	 Öhman, (2013) supra
18	� See SIFMA Whitepaper - “Industry Recommendations for the Creation of a Consolidated Audit Trail”, see also CAT NMS Plan - “SRO NMS Plan Industry Call” –  

http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf pp17
19	�  “10 More Common Mistakes Java Developers Make When Writing SQL”, #2 – https://blog.jooq.org/2013/08/12/10-more-common-mistakes-java-developers-make-when-writing-sql/
20	� Google Search Results: “ 25e9 bytes / 1 hour in Mbps” – https://www.google.com/?q=25e9%20bytes%20/%201%20hour%20in%20Mbps

25,000,000,000 records * 1 Byte = 25,000,000,000 Bytes = 25e9 Bytes

6,944,444 B/s25e9 Bytes
60 minutes

25e9 Bytes
3600 seconds= =

6,944,444 b/s = 6.944 MB/s

6.944 MB/s = 55.5 Mb/s

http://www.investopedia.com/articles/01/022801.asp
http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf
https://blog.jooq.org/2013/08/12/10-more-common-mistakes-java-developers-make-when-writing-sql/
https://www.google.com/?q=25e9%20bytes%20/%201%20hour%20in%20Mbps
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+-----------------+--------------------------------+------------+-------------+------------+

|  Last modified  |             Schema             | Total Rows | Total Bytes | Expiration |

+-----------------+--------------------------------+------------+-------------+------------+

| 24 Mar 11:52:33 | |- id: string                  | 26459506   | 6884653269  |            |

|                 | |- Parent: string              |            |             |            |

|                 | |- GrandParent: string         |            |             |            |

|                 | |- timestamp: string           |            |             |            |

|                 | |- EventId: string             |            |             |            |

|                 | |- ReporterId: string          |            |             |            |

|                 | |- Child: string               |            |             |            |

|                 | |- CustomerId: string          |            |             |            |

|                 | |- CustomerIdValid: string     |            |             |            |

|                 | |- side: string                |            |             |            |

|                 | |- CHILD_side: string          |            |             |            |

|                 | |- symbol: string              |            |             |            |

|                 | |- CHILD_symbol: string        |            |             |            |

|                 | |- CHILD_ordType: string       |            |             |            |

|                 | |- eventType: string           |            |             |            |

|                 | |- brokenTag: string           |            |             |            |

|                 | |- ReporterIdValid: boolean    |            |             |            |

|                 | |- SideMatch: boolean          |            |             |            |

|                 | |- SymbolMatch: boolean        |            |             |            |

|                 | |- SymbolValid: boolean        |            |             |            |

21	 Palmer, et. al (2015) supra
22	 Simba ODBC – http://www.simba.com/drivers/bigquery-odbc-jdbc/
23	 “Data types” – https://cloud.google.com/bigquery/preparing-data-for-bigquery#datatypes 

1.2.3 Lifecycle publication
The original solution architecture did not specify any native mechanism for 
visualization of  the derived lifecycles.21 With this test iteration, given the 
introduction of  Cloud Dataflow support for both Bigtable and BigQuery, 
we decided to include a stage near the conclusion of  the pipeline that 
persists derived linkage results to a BigQuery dataset, in order to leverage 
its rich support for a broad array of  third-party analytics.22 

This was performed by flattening the Bigtable column families and 
only using the top level of  column data (ignoring any underlying nested 
structures). For improved performance and an optimal footprint of   
at-rest data, BigQuery’s native data types were used.23 

The derived BigQuery schema is opportunistically denormalized. For 
example, the CHILD_* columns allow the analytics tool to outline potential 
issues with event submissions without resorting to joins or multi-table 
SELECT statements. The same principle applies to the Error column family, 
which provides additional details around why a particular event was flagged. 

The following illustrates the output of bq --pretty show for the 
BigQuery schema used by Dataflow to facilitate post-processing 
analytics.

http://www.simba.com/drivers/bigquery-odbc-jdbc/
https://cloud.google.com/bigquery/preparing-data-for-bigquery#datatypes
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24	 Palmer, et. al (2015) supra pp 5
25	 “Bidders for SEC’s CAT System Narrowed to Six from 10” – http://www.wsj.com/articles/bidders-for-secs-consolidated-audit-trail-system-narrowed-to-six-from-10-1404247796
26	 = SEC Rule 613 supra 
27	� A Market Participant Identifier (MPID) is a unique symbol identifying a specific trading unit registered with a national securities exchange or association. For example, the  

MPID for Morgan Stanley is “MSCO”.

Figure 2: Market Reconstruction Scatterplot

2 Recapping previous efforts

2.1 Items outstanding from the original white paper
While the total volume of  data submitted during 2015’s testing campaign 
did not represent the full extent of  a typical U.S. equities trading session, 
the solution architecture was observed to exhibit near-linear scalability.24 
In contrast, for the updated system, the target volume was escalated to 25 
billion order events, with the goal of  deriving the requisite linkages among 
them in a single hour. 

This particular benchmark was selected because it represents nearly 
double the estimated “58 billion” daily events projected for “the world’s 
largest repository of  securities transaction data”25 and also implies that a 
four-hour window would provide regulators with the ability to reconstruct 
market events without a protracted duration of  interim processing.26 

We first began the testing campaign targeting a volume of  one percent of  
25 billion messages end to end, with continual, incremental adjustments 
to key configuration parameters (such as worker machine type and count) 
performed between iterations. Insights emerged during each step. For 
example, by the 10 percent test, it became apparent that the mere act 
of  logging debug messages presented us with a material degradation of  
algorithmic performance. Even if  a particular logging implementation 
is implemented in linear time, every operation – no matter how trivial 

– does accumulate to yield a non-trivial footprint at this scale. Hence, 
eliminating non-essential code is an absolutely crucial step in maximizing 
the performance of  a pipeline.

In order to provide high-fidelity inputs representing a cross-section of  
market activity, it was necessary for us to manufacture a data generator for 
fictitious events depicting the order lifecycles of  diverse market participants. 
Preliminary versions of  the tool offered simple procedures that generated 
an assortment of  static lifecycles, varying only in their randomly generated 
prices, symbols and MPIDs.27 As this mechanism evolved alongside the 
solution architecture, it has been consequently expanded to produce 
increasingly complex market event lifecycles. This generative process 
was constructed using a Markov Chain, allowing us to parameterize the 
likelihood of  a given event at any stage of  an order lifecycle.

BigQuery has continued to provide the primary method for querying and 
accessing the post-processed order lifecycles. A visualization front-end was 
prototyped to showcase user interface (UI) concepts that facilitated the 
analysis and visualization of the massive volumes under the MRP’s purview. 
The following is a screenshot from the UI prototype that takes advantage of  
the BigQuery API within a single-page application (SPA), combining both 
the derived lifecycles and public market data to ultimately provide the means 
for reconstructing point-in-time market activity. 

http://www.wsj.com/articles/bidders-for-secs-consolidated-audit-trail-system-narrowed-to-six-from-10-1404247796
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2.2 Addressing prior limitations
One of  the motivations for revising MRP components was to address 
the limitations of  the original solution. In this section, we describe how 
the addition of  Google Cloud Dataflow and Google BigQuery to the 
solution architecture impacted the observed performance results and 
the overall experience in building and using the system.

The following sections correspond to the limitations detailed in our 
original white paper28 and explain how they are addressed within the 
latest testing campaign.

2.2.1 Formalized testing of  reads not completed
In 2015’s testing campaign, measurement of  Bigtable read performance 
was not explicitly broken out. During this exercise, however, measurement 
of  read operations has now been added to the second stage of  the pipeline. 
This stage builds the order lifecycles before publishing them into BigQuery. 

2.2.2 Cannot possibly account for all possible  
order scenarios
We have increased the capabilities of  our data generator to expose the 
lifecycle builder to a wider variety of  lifecycle scenarios. We believe this 
yields a much more realistic simulation for reconstruction scenarios overall.

2.2.3 No evaluation of  durability
When running parallel workloads at this scale, it is inevitable that some 
workers will fail midstream, for any number of  reasons. The data 
graphs and worker population of  the linkage process must be resilient 
amid both rapidly evolving state and worker ephemerality.

A particularly appealing feature of Dataflow is the ability to maintain 
a consistent worker population and preserve exactly-once within the 
pipeline processing guarantees when these inevitable worker failures 
are encountered. When a worker fails mid-pipeline, Dataflow will 
automatically restart the defunct worker process and re-execute the unit 
of work that was in-flight.

For its part, Bigtable is responsible for maintaining the durability and 
correctness of  order lifecycles. Specifically, in the event that a portion 
of  the Dataflow job fails and is subsequently retried, side effects, like 
writing to Bigtable are also retried, meaning a single record may be 
written to Bigtable multiple times. However, the final output is still 
correct, as Bigtable resolves these writes and returns only the latest 
version to downstream pipeline components. This is made possible 
by, and shows the importance of, having deterministic record UUIDs 
when using side effects in Dataflow.

2.2.4 Cluster sizing 
Given the size of  this load test and the methodical iteration practices 
employed, we are confident that we have arrived at an optimal overall 
configuration.29 Observations indicate that the worker CPU-to-Bigtable 
node ratio scales linearly and optimizes the configuration for the 
respective compute and throughput-bound tasks.

The exercise30 to determine optimal cluster sizing started with a 

28	� Palmer, et. al (2015) supra pp 8 table 4
29	� See 3.2 Results
30	� See 3.2.2 Resources consumed per target workload 
31	� See 4.4 VM sizing
32	� See 4.7 Bigtable splits
33	� Chang, et. al (2006) “Bigtable: A Distributed Storage System for Structured Data”
34	 See 4.7 Bigtable cluster distribution and scaling

fractional workload of  one percent and assumed that all individual 
service resources would scale linearly. This assumption was predicated 
upon the belief  that the custom business logic executed by Dataflow 
was free of  locks, latches or synchronization points. The specific 
parameters used to instrument the various components from a sizing 
perspective were:

•	 Number of  nodes in Bigtable cluster

•	 Dataflow worker machine types31

•	 Number of  Dataflow workers

•	 Bigtable split ratio32

The ultimate goal when deciding on candidate configuration parameters 
is to yield maximum utilization of  all component resources, but stopping 
short of  queuing work at any tier. When scaling horizontally, additional 
resources are brought online when existing resources are at capacity. 

All test iterations were closely monitored and fine-tuned. If  resource 
metrics indicated that there was room for additional improvement, 
then there was always a prior baseline established for comparison. 
For example, Dataflow worker machine types were adjusted (while 
maintaining the same number of  cores overall) in order to optimize 
the ultimate network footprint between Dataflow and Bigtable. By 
keeping granular performance statistics across all tiers of  the stack, it 
was straightforward to evaluate specific tactical design approaches in 
the pursuit of  an optimal configuration overall.

2.2.5 Failure to account for rebalancing and scaling 
of  the Bigtable cluster
Bigtable will automatically attempt to learn data access patterns, and 
subsequently rebalance its region server definitions (also referred 
to as “splitting” the cluster). The HBase shell allows one to specify 
splits and hence influence the size of  Bigtable’s tablets.33 For the 
purposes of  this testing campaign, the split ratio upon which 
we ultimately decided was found to be sufficiently optimized.34  
 
However, we expect that any ratios chosen would prove optimal only 
under specific, well-defined workload scenarios. Hence, organizations 
looking to conduct similar exercises must do so in the context of  their 
own particular infrastructural constraints. 

There exists a multitude of  disparate configuration parameters that 
define each test’s dimensions, such as worker node machine types, worker 
geography, and the disk size of  cluster nodes. We found that managing 
these configurations diligently enables more precise measurements and 
higher-fidelity iteration comparisons, allowing one to truly pinpoint 
each tier’s contribution to the overall resource footprint. 

The resource measurements are not limited to simply the computing realm. 
One key economic benefit of  a cloud computing model is the transparency 
of  resource accounting, with the ability to access resource utilization 
programmatically. This allows teams to easily add the cost dimension to 
their infrastructure testing model, and use the resulting metrics to further 
inform architectural decisions, embedding operating expenditures among 
the metrics used to evaluate a particular architecture’s overall suitability.
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2.2.6 Bigtable’s programmatic interface is limited to 
the HBase API
Using the HBase API enabled us to leverage existing tools (in this 
case, the HBase shell) to create and optimize our tables. One way we 
accomplished this was by passing in the region split parameters when 
the tables were initially created.

In late 2015, Google released a Cloud Bigtable I/O connector for the 
Dataflow SDK.35 This capability gave the FIS engineering team the 
ability to integrate Bigtable and the Dataflow execution pipelines in a 
more standardized fashion. The previous design used the HBase API to 
communicate with Bigtable from within custom pipeline code. In contrast, 
representing Bigtable as a Dataflow I/O connector reduces some risk of  
abstraction leakage36 and, given the standardized interfaces and API model 
employed by the Dataflow SDK, promotes reusability, modularity and 
standardized interfacing among the project’s customizations.

2.2.7 No ad-hoc SQL for analytics
Recently, there has been a trend of  product releases offering  
SQL-compliant APIs for interacting with NoSQL database platforms.37 

35	� “Dataflow Connector for Cloud Bigtable” – https://cloud.google.com/bigtable/docs/dataflow-hbase
36	 Spolsky (2002)
37	� Tools such as Apache Phoenix, Crate.IO and Apache Drill are some examples. The latter draws inspiration from Dremel, Google’s own proprietary ancestor to BigQuery. 
38	� “Why SQL Is Important” – VoltDB – https://voltdb.com/why-sql-important
39	� Cloud Bigtable and the HBase API – https://cloud.google.com/bigtable/docs/bigtable-and-hbase
40	� Palmer, et al. (2016)

Given the existing installed base and popularity with end users, support 
for SQL as a query API is desirable.38 Yet, until recently, the modern 
NoSQL landscape had offered limited SQL interfaces, instead preferring 
custom programmatic APIs or resorting to an implementation of  “SQL-
like” capabilities.

At the time of  writing, Bigtable supports the standard HBase API 
for issuing queries, but no direct support for queries written in a 
SQL or quasi-SQL syntax.39 However, our ultimate vision for market 
reconstruction and forensic activities indeed includes a SQL interface 
at the “last mile” in order to facilitate the independent efforts of  
business analysts and market regulators, and to capitalize upon its broad 
familiarity among industry practitioners.

Google’s BigQuery managed database service, on the other hand, 
employs a dialect of  SQL that analysts should find quite familiar. 
BigQuery also provides many analytical functions directly, beyond 
those observed in common vendor-specific SQL dialects. Even 
though still in Beta, Standard ANSI SQL is supported, too. In 
addition, BigQuery provides a mature REST interface secured by 
Google Authentication. This interface has been extremely helpful in 
the development of  front-end analytic tooling without the need to 
deploy a full-blown application server tier between the browser and the  
event repository.40

https://cloud.google.com/bigtable/docs/dataflow-hbase
https://voltdb.com/why-sql-important
https://cloud.google.com/bigtable/docs/bigtable-and-hbase 
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41	 The second part of the pipeline was never successfully executed to completion, therefore no time measurement exists
42	 See 4.6 BigQuery import

3.2 Results 
 
3.2.1 Executed runs

Target 
workload (%)

# Messages 
(billions)

# Bigtable 
nodes

# Dataflow 
worker cores 
(machine type)

Ingestion 
duration 
(minutes)

Lifecycle 
generation 
(minutes)

BigQuery 
import 
(minutes)

1 0.25 20 80	 (n8) 32 35

5 1.25 175 400	 (n8) 20 36

10 2.50 350 320	 (n32) 35 40

20 5.00 700 960	 (n32) 25 n/a41

40 10.00 1,400 1,920	 (n32) 35 16 120

80 20.00 2,800 7,680	 (n32) 34 15 180

100 25.00 3,500 9,600	 (n32) 32 18 1842

Table 2: Test Campaign Metrics

3 Scaling up

3.1 Approach, sizing and assumptions
To reach the target throughput goal of  25 billion events processed per 
hour, multiple runs of  the one percent (250 million messages) workload 
were executed. This drove our estimation of  the necessary resources 
required for the execution of  a 100 percent workload.

Individual Google Cloud Platform (GCP) services may possess their 
own service-specific limitations. For example:

•	 �Maximum compute allocation per Dataflow job: 10,000 cores

•	 �Maximum bucket size from which BigQueryIO can import data: 
10,000 objects

The observations illustrated in Table 2 represent averages derived from 
multiple test iterations for the particular resource configuration indicated.
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3.2.2 Resources consumed per target workload
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Figure 3: Dataflow Worker Cores (Left) vs. Bigtable Nodes (Right) – Dataflow Worker Cores from 8,680 to 9,600 Overlap with Bigtable Nodes from 2,800 to 3,500 
(Source: Table 2)
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4 Discussion

4.1 Key findings
Our observations indicate that, when employed interdependently, the various 
services of  the GCP yield a solution architecture that scales nearly linearly.

While employing GCP as a computing provider relieves the 
infrastructure management burden from application and operations 
teams, data processing at this scale still demands a measured approach 
in order to realize maximum benefit. For applications processing such 
massive volumes of  data, miniscule inefficiencies that might be ignored 
without consequence at smaller scales can, in fact, have considerable 
performance implications. Therefore, in order to identify and  
forestall potential workload bottlenecks, it is crucial to produce 
thoroughly-tested and highly-optimized code, while continually 
measuring key performance metrics across all architectural tiers.

4.2 GCP quotas
Despite cloud computing’s promise of  virtually unlimited, on-demand 
computing resources, by default, GCP does impose a limit to a 
project’s immediately addressable computing resources. Since quotas 
are configured on a per-project and per-service basis, conducting a 
large-scale, end-to-end exercise such as this requires the coordination  
of  multiple grants of  quota escalation platform-wide. In many 

1
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16

32

64

128

1% 5% 10% 20% 40% 80% 100%

Ingestion	duration	(minutes) Lifecycle	generation	&	BigQuery	 import	combined	(minutes)

Lifecycle	generation	 (minutes) BigQuery	 import	- JSON	(minutes)

BigQuery	 import	- CSV	(minutes)

3.2.3 Total execution time in minutes per target workload

instances, a quota insufficiency in one service area manifests itself  
as a side effect within a separate service area. A common example  
is breaching an underlying Google Compute Engine memory, core  
or disk quota limitation, despite Dataflow worker counts being well 
within the default worker and job quota thresholds. In planning the 
execution of  such workloads, it is helpful for teams to forecast their 
consumption of  underlying resources, compare that forecast to a 
project’s existing quota levels, and request threshold limit adjustments 
from Google accordingly.

For the architecture described herein, the specific quotas adjusted from 
GCP project defaults were:

•	 �Compute Engine resources (cores, memory, IP, attached storage)

•	 Cloud Bigtable cluster size

•	 GCP limits as described in section 3.1

•	 Individual API quotas43 

For API quotas specifically, using a large number of  smaller workers 
for a particular pipeline can lead to more rapid starvation of  available 
resources, since each worker node imposes its own API footprint 
when communicating with the Cloud Dataflow controller process. In 
the event that an API quota threshold is breached repeatedly, it may 
be beneficial to increase worker throughput by employing a smaller 

43	� “Dataflow API” from the Google Cloud Platform console – https://console.cloud.google.com/apis/api/dataflow.googleapis.com/usage

Figure 4: Stage Processing Time in Minutes (Vertical Axis, Base-2 Logarithmic) of the Target Message Amount (Horizontal Axis) (Source: Table 2)

https://console.cloud.google.com/apis/api/dataflow.googleapis.com/usage
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number of  larger workers (i.e. scale vertically). Most quota breaches 
experienced during these exercises have in fact been of  this “second 
order” variety. Thus, while linear application response is critical to a 
solution’s ability to scale horizontally, ignoring the vertical dimension 
to sizing Dataflow pipelines could result in missed opportunities  
for valuable optimizations.

Quotas are typically granted to GCP services on a per-project,  
per-region basis.44 Dataflow jobs, Bigtable clusters and Cloud Storage 
buckets can also be specified on a per-region basis. When managing 
quota limits, distributing job workloads according to region can be 
helpful in managing a project’s resource expenditure.45 

4.3 Worker ramp-up and tear-down time
When employing large numbers of  Dataflow workers, ramp-up 
latency can be considerable as the Dataflow resource coordinator adds 
worker nodes in batches in response to escalating demand. In order 
to reduce this autoscaling latency, and because the specific workload  
goal of  each iteration was known in advance, the team developed a tool to 
preempt the instantiation of  pipeline worker nodes,46 allowing the actual 
Dataflow pipeline activity to start in response to a Cloud Pub/Sub message 
instead. This can be viewed as starting the performance test with a warm 
cluster, since it allows processing at full throttle for the entire pipeline 
duration. When all workers that have been allocated for a particular job are 
ready, an out-of-band message is sent, received by a PubSubIO instance and 
the pipeline execution begins, capitalizing on all available workers.

Equally, Dataflow jobs do not report completion until all associated 
pipeline workers have been shut down. However, the shutdown process 
for workers begins when there are no more active ParDos within 
the pipeline, and does not wait for any downstream I/O operations 
to complete. Thus, projects are not billed for non-useful Compute 
Engine time even within an otherwise active pipeline. Developers must 
be circumspect with regards to pipeline architecture when deploying 
within a metered cloud environment, as any inefficiencies translate 
directly into the ultimate cost of  computing the workload.

4.4 Worker machine type sizing
The sizing of  the workers is a crucial characteristic of  the Dataflow 
pipeline as it directly impacts Bigtable’s throughput capabilities. Too 
few nodes will not allow the workload to extract Bigtable’s maximum 
throughput yield. Too many nodes, on the other hand, can result in 
excessive timeouts and retries that can significantly contribute to 
throughput degradation. 

As evidenced by our results, at smaller workload sizes, n1-standard-8 
instances scaled better – a characteristic shared by earlier test results.47 
At a larger scale, n1-standard-32 instances yielded the best performance. 
This is a result of  Bigtable’s incremental network footprint as well as 
the footprint imposed by Dataflow job coordination.

4.5 Microbenchmarks
Given the sheer amount of  processing power required for big data jobs, 
writing solid, optimized code is an absolute necessity. While we kept the 
source code underlying the test to strictly idiomatic Java, nevertheless, 
we adhered to the following performance optimization practices:

•	 �Eliminate debug logging and/or otherwise arbitrary writes to  
System.out

–– �In the case of exception logging, framework-specific 
methods should be used. Cloud Dataflow uses custom 
bindings to emit log events of all the common logging 
frameworks48 to Cloud Logging. But if a stack trace is 
logged to STDOUT, this will cause a single log event per 
stack element/line in STDOUT, which is also  
very expensive. 

•	 �Cache local variables and derived computations, where possible

•	 �Use StringBuilder in lieu of  direct concatenation, where 
necessary

•	 �Use Java 8’s java.time.* package rather than java.util.Date and  
its cohorts

•	 Limit the use of  Java’s native exception model49 

•	 �Capitalize upon the Dataflow SDK’s use of  the template method 
pattern and organized our initialization routines appropriately.50  
We used startBundle() and finishBundle() to initialize and 
destroy resources. Invocations of  processElement() should not 
be used to perform initialization duties for any dependent logic 
embedded within.

We found that the Java Microbenchmark Harness (JMH)  
was a helpful tool for reliable microbenchmarking during regression 
tests of  both the functional and the non-functional requirements.51 

4.6 BigQuery import
The implementation of  the Dataflow SDK BigQuery adapter originally 
used for the test employed Javascript Object Notation (JSON) as its 
exchange format. Compared to other protocols, JSON is relatively 
verbose as each representative object is self-describing, leading to a large 
amount of  data going over the wire being redundant. Furthermore, the 
additional markup with every record results in additional processing time 
as the import process must read in (then discard) the additional text. Since 
the object schema for each record was highly structured and uniform 
record-to-record, there was no particular upside to the JSON encoding 
for our specific use case.

Additionally, given the sheer amount of  data being imported,  
fine-tuning was required to put a ceiling on the number of  files that 
the Dataflow SDK BigQuery adapter had to address. If  the number of  
temporary JSON files created by BigQueryIO exceeds 10,000, then the 
entire BigQuery import can fail.

44	� “Resource Quotas” within the Google Cloud Platform – https://cloud.google.com/compute/docs/resource-quotas
45	� The flip-side, of course, is that buckets and workers that are regionally co-located exhibit superior performance
46	 PubSubStarter is available from https://github.com/SunGard-Labs/dataflow-whitepaper
47	 Palmer, et. al (2015) supra
48	� “Adding Log Messages to Your Pipeline” – https://cloud.google.com/dataflow/pipelines/logging 
49	� One third-party library employed for the test extensively used the exception class hierarchy and control flow during initialization. The performance implications were severe enough that our team 

resorted to overriding the library’s fillStackTrace() method to ameliorate some of the performance impact, as more invasive adjustments to the library were impractical.
50	� https://en.wikipedia.org/wiki/Template_method_pattern
51	 JMH – http://openjdk.java.net/projects/code-tools/jmh/

https://cloud.google.com/compute/docs/resource-quotas
https://github.com/SunGard-Labs/dataflow-whitepaper
https://cloud.google.com/dataflow/pipelines/logging 
https://en.wikipedia.org/wiki/Template_method_pattern
http://openjdk.java.net/projects/code-tools/jmh/
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Hence, for the 100 percent load test iteration, we authored a custom 
BigQuery import function that generates a CSV file per worker and 
saves the files (using TextIO from the standard Dataflow SDK) to 
Google’s cloud storage service. This approach allowed us to reach 
the desired target execution time and also resulted in a very simple 
implementation. Since the FIX tags being persisted to BigQuery were 
known and static, no additional third-party libraries were used, which 
reduced any uncertainties related to performance characteristics under 
the current scenario. Only simple operations using StringBuilder and 
byte[] were necessary – again, backed by JMH tests to measure relative 
performance impact on each iteration.52 

This is an excellent example of  the seemingly small implementation 
details, often going unnoticed for smaller workloads, that can result in 
a material performance footprint when accumulated over millions of  
transactions per second.

4.7 Bigtable cluster distribution and scaling
By default, Bigtable analyzes table keyspaces and automatically 
compacts and rebalances data across cluster nodes. However, given 
the specific scale and workload performance that was required as part 
of  this effort, it was decided to explicitly specify how Bigtable should 
distribute table data physically. This can help forestall unnecessary 
compaction operations and optimize the distribution and transfer of  
table data within the cluster as it scales up. This can be thought of  as 
similar to the practice of  explicitly specifying a large fixed heap size 
and/or garbage collection parameters to Java virtual machine (JVM) 
processes, to optimize the JVM’s time spent on heap maintenance.

Each market event message is tagged with a UUIDv4 value that is 
randomly and uniformly distributed over the entire keyspace. Because 
of  this distribution profile, it was decided to explicitly configure the 
splits at the time of  table definition. To avoid performance degradation 
stemming from the “hot” node phenomenon that can plague tables 
with poor keyspace distribution, Bigtable will periodically evaluate 
the key space distribution of  the table. As UUIDv4 values are, in 
general, random and therefore exhibit broad distribution over the 
entire keyspace, it is nearly impossible for Bigtable to glean a legitimate 
pattern from which to make rebalancing decisions, especially when 
the table contains only a small percentage of  its ultimate volume. This 
could lead to a situation in which Bigtable assumes a row key, such as 
“123e4567-e89b-12d3-a456-426655440000,” as the upper boundary 
of  the keyspace – which is not necessarily correct based upon the entire 
ID space. Before data is ingested, the keyspace distribution is already 
known (which may not be the case in other circumstances), so it is 
sensible to direct Bigtable accordingly.

Based on our previous tests with smaller datasets and running the  
same data set  using multiple factors, we found that a factor of 24 times 
the amount of Bigtable nodes provided optimal throughput. In other 
words, for a Bigtable cluster with 10 nodes, 240 splits are used during 
table creation.53 

The process behind arriving at this factor is lengthy, but follows a 
distinct pattern. The Dataflow worker nodes must be sufficiently 
sized such that they themselves are not the limiting factor. When this 
has been achieved, a complete run is conducted while monitoring 
Bigtable’s write throughput performance via the Google Cloud 
Console. If  the observed write performance experiences significant 
deterioration after its initial increase, yet ultimately reaches its  
final write performance later on, the deterioration is quite likely  
due to Bigtable’s rebalancing. Eventually, the split initially chosen 
becomes less optimal as the totality of  the dataset (and its associated 
keyspace) converges. 

At this point, iterations of  adjusting the split count then re-running 
the test (while keeping all other factors stable) should improve the 
observed throughput.

This process is repeated until no further deterioration is observed. 
One aspect to validate during this exercise is that the increased Bigtable 
performance does not encounter additional bottlenecks elsewhere 
within the solution.54 

4.8 Using Bigtable for stateful pipelines
The ability of  application logic to scale linearly based upon workload 
demand is inextricably linked to the logic’s reliance upon a shared state. 
The facilities and API semantics of  the Dataflow SDK abstract the 
majority of  this complexity from the software engineer. This is not to 
say that developers are inoculated against all pitfalls; however, with no 
way to enforce shared-state restrictions at compile time, there remains 
ample opportunity for developers to introduce inefficiencies.55 In order 
to dispatch logic upon the inbound datasets with near-linear scaling 
performance, all information required by the processElement() 
method must be known at the time of  entry. Dependency upon 
any external, mutable and shared data source introduces non-
functional hazards into the system, such as performance-degrading 
synchronization points.

As such, the linkage algorithm conducts its own message processing 
based upon immutable input values and ensures that, over time, all 
requisite information falls into the right place – not unlike the game 
Tetris® where each element contributes to the greater structure by 
being placed in the right position upon arrival. As further elements 
are added to the structure, ultimately the final superstructure (pipeline) 
representation converges.

One area where Bigtable has helped in this regard is in supporting 
row inserts from multiple, parallel PUT operations, with the final row 
represented by the cumulative information of  all preceding PUTs.

52	 See 4.5 Microbenchmarks
53	� The Split Generator source code by FIS Global can be found at https://github.com/SunGard-Labs/dataflow-whitepaper/blob/master/src/main/java/com/sungard/dataflow/BigtableSplitGenerator.java
54	� See 4.9 Google Cloud Platform vs. private infrastructure
55	� Sferrazza, et al  (2015)

CREATE ‘myTable’, {NAME=’CF1’}, {NAME=’CF2’}, 

SPLITS => [‘keyboundary1’, … , ‘keyboundaryN’]

https://github.com/SunGard-Labs/dataflow-whitepaper/blob/master/src/main/java/com/sungard/dataflow/BigtableSplitGenerator.java
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4.9 Google Cloud Platform vs. private infrastructure 
Cloud computing offers unprecedented power to consumers without the 
burden of  traditional, large upfront capital investment in infrastructure 
and support. However, for workloads operating at terabyte or petabyte 
processing scales, a circumspect and evidence-based approach to 
deriving the ultimate solution architecture is necessary, to which  
in-house approaches should also subject themselves. Applying small, 
incremental changes that evolve the solution in small steps is preferable. 
While stringently and relentlessly measuring the impact of  each change 
can often be tedious, this practice enabled our team to navigate the 
associated architectural and engineering trade-offs with confidence.

Given the isolation of  individual cloud services, they can simply 
be added to the system on-demand – without an associated,  
up-front capital investment. In addition to the financial advantages, 
this poses great benefits to developers as well, as it removes barriers 
to experimentation and potentially reduces time-to-insight.56 Different 
services may be added provisionally to evaluate their suitability for a 
particular function, and evidence of  this suitability may be collected 
to assist in arriving at an architectural decision. One does not need to 
conduct a lengthy procurement cycle only to learn ultimately that the 
service does not meet expectations.

This methodology is especially important as components are added 
to an evolving solution architecture, since the isolation of  individual 
factors affecting system performance becomes more challenging and 
time-consuming. Therefore, our typical approach was to conduct 
initial tests with abridged datasets while constantly measuring key 
performance metrics of  the particular system-under-test against any 
individual configuration profile. 

As bottlenecks emerge in any one component, improvement efforts 
should be focused there. However, it is important to note that the 
“component” in question might prove to be any combination of  
custom application code, external resources or even quotas imposed 
by the underlying computing provider.57 Once a bottleneck is removed, 
the throughput of  the system is free to scale,58 and the infrastructure 
underpinning the solution can dynamically and predictably align to  
end-user demand.

Additionally, the segregation of  each cloud service as a discrete 
component facilitates performance tuning overall. When bottlenecks 
emerged within any particular service, the universe of  possibilities 
for optimization were restricted to the specific service’s configuration 
parameters. While this limitation may be a departure for engineers  
who are comfortable crossing multiple OSI layers during 
troubleshooting exercises, limiting the tuning parameters to a  
service-specific configuration presented a clear productivity benefit for 
our development team. 

One practical aspect of  conducting such large-scale testing exercises 
of  which teams must be mindful is the decommissioning of  resources 
between active testing iterations. While the volumes conducted in this 
test are exaggerated for many typical workflows, even  lower-demanding 
testing iterations can consume a large amount of  compute, I/O, service 
and storage resources. Hence, automating the decommissioning of  
resources as part of  the test iteration regimen is essential for the precise 
quantification of  workload cost as well as for avoiding expenditure on 
unproductive resources.

5 Conclusion
 
Based upon our findings and the overall insights gained,59 the approach 
of  relentlessly capturing performance metrics while increasing 
workloads incrementally resulted in a very positive testing outcome. As 
always, system readiness tests must be budgeted from both a human 
and computing resource standpoint. The specific iterations required to 
conduct massive scaling exercises entail the extensive coordination of  
both systems and personnel. Thus, it is wise to plan the effort carefully, 
and focus on maximizing the system’s available throughput across 
every dimension of  the overall solution architecture. 

Mitigating the computing burn rate can be achieved by optimizing 
application code and algorithms, and avoiding computationally 
expensive operations when there may be simpler alternatives, such as 
System.arraycopy().60 It is also worth mentioning that each major Java 
version has significantly different execution behaviors with regards to  
the runtime’s component base classes (String, java.math, wrapper 
types, etc.). Therefore, it is helpful to conduct microbenchmarks in 
tandem with the application of  software engineering best practices, in 
order to build evidence to support or refute assumptions and expectations 
about code paths. Additionally, the refactoring of  application code 
often goes hand in hand with performance improvements, further 
incentivizing and rewarding optimizations at this scale. 

The escalation of  data quantity and velocity, in no way restricted to the 
financial space, portends that a move to cloud computing is desirable 
and inevitable across many industry sectors. In order for engineering 
teams to extract the most benefit from these capabilities, application 
development approaches must evolve accordingly. Dataflow, Bigtable 
and BigQuery liberate developers from most complexities underlying 
big data application development and infrastructure deployments for 
distributed, parallel systems. They allow programmers and engineers 
to operate on a higher level, one much closer to the specific problem 
domain being addressed. While this combination of  services 
significantly raises the bar on what even modestly-sized engineering 
teams can accomplish in a short duration, extracting the maximum 
symbiotic benefit undoubtedly requires adjustment from traditional 
development approaches. 

56	� “How Time-to-Insight Is Driving Big Data Business Investment” http://sloanreview.mit.edu/article/how-time-to-insight-is-driving-big-data-business-investment/
57	 See  4.2 GCP quotas
58	 Goldratt (1984)
59	 See 4 Discussion
60	� System’s arraycopy() is a native method that typically provides superior performance for operations on arrays

http://sloanreview.mit.edu/article/how-time-to-insight-is-driving-big-data-business-investment/
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