
Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 1

1 Background

1.1 Introduction
As part of its bid to become the Plan Processor for the Consolidated
Audit Trail (CAT) initiative,1 FIS developed a prototype of the principal
order linkage use case specified by CAT’s requirements. In May of
2015, FIS detailed the results from the initial version of this prototype,
which was based broadly on Hadoop and Google Cloud Bigtable.2
Since then, Google Cloud Dataflow has gone GA.3 Here, FIS outlines
its experience integrating Dataflow and BigQuery into its original
prototype assets, and contrasts the relative observations of the two
solution architectures from both development practices and runtime
performance perspectives.

Market Reconstruction 2.0: A Financial
Services Application of Google Cloud
Bigtable and Google Cloud Dataflow
Neil Palmer, Sal Sferrazza, Sebastian Just, Adam Najman - FIS
{neil.palmer; salvatore.sferrazza; sebastian.just; adam.najman}@fisglobal.com

1.2 Reconstructing the market
While the principal functional requirements4 of the linkage algorithm
have not changed from 2015, several major components of the MRP’s
overall solution architecture have been replaced. Namely, the job
orchestration and execution capabilities that formerly employed custom
Java code running within Hadoop5 have been ported to pipelines
developed using the Google Cloud Dataflow SDK, and executed
within the Google Cloud Dataflow runtime environment. The benefits
that Cloud Dataflow offers developers are manifold; among them are:
reduced infrastructure administration, automatic scaling, and an SDK
with native support for both batch and streaming modes. Additionally,
linkage results produced by the pipeline are now published to a Google
BigQuery dataset, allowing for the visualization and analysis of derived
lifecycle data immediately after processing.

1	� For more information on SEC rule 613, see http://www.catnmsplan.com
2	� Palmer et al. (2015) “Scaling to Build the Consolidated Audit Trail: A Financial Services Application of Google Cloud Bigtable”
3	� “Google Cloud Dataflow and Cloud Pub/Sub Reach General Availability” – http://www.programmableweb.com/news/google-cloud-dataflow-and-cloud-pubsub-reach-general-

availability/2015/08/18
4	� SEC Rule 613 (Consolidated Audit Trail) – https://www.sec.gov/divisions/marketreg/rule613-info.htm
5	� http://hadoop.apache.org/

Abstract

The FIS Market Reconstruction Platform (MRP) is a market surveillance and forensics utility designed for the daily ingestion, linkage and analytics
of U.S. equity and equity options market events over multi-year periods. In May of 2015, FIS’ Advanced Technology group (formerly SunGard)
released a white paper detailing its experiences using Google Cloud Bigtable in prototyping the MRP. In the months that followed, Google opened
several other services within its Cloud Platform suite to general availability (GA), among them Google Cloud Dataflow. The solution architecture
is revised to include both Cloud Dataflow and Google’s BigQuery service in addition to Bigtable. With the combination again considered in
the context of the MRP requirements, we conducted additional experiments measuring the speed and scalability of the revised architecture.
We have found that while it is imperative that engineers adopt specific approaches that capitalize upon cloud and parallel computing paradigms,
employing these services together does yield the potential for extraordinary computing performance.

http://www.catnmsplan.com
http://www.programmableweb.com/news/google-cloud-dataflow-and-cloud-pubsub-reach-general-availability/2015/08/18
http://www.programmableweb.com/news/google-cloud-dataflow-and-cloud-pubsub-reach-general-availability/2015/08/18
https://www.sec.gov/divisions/marketreg/rule613-info.htm
http://hadoop.apache.org/

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 2

Figure 1: Dataflow Pipeline: Execution Graph and Metrics

1.2.1 Message ingestion
The ingestion component of the Dataflow processing pipeline takes
input from synthetic Financial Information eXchange (FIX) protocol
messages that reside in flat files within Google Cloud Storage, and
performs syntax and structural validations upon them. After validation,
specific FIX tag values are extracted from the submission files and
loaded into Cloud Bigtable.6 As a durable, distributed and shared
memory repository, Bigtable is used to maintain a consistent, prevailing
state of the trading session’s order lifecycle graphs.

One of the MRP’s operational constraints is that order event data can
arrive from many disparate, independent market participants – with no

chronological guarantee of arrival time, and therefore, no guarantee of
processing order. When any individual event is processed, a complete
end-to-end order lifecycle linkage will not be immediately possible if
its subsequent or prior lifecycle events have not arrived.

Dataflow provides exactly once processing within the pipeline, yet
side effects, like a write to Bigtable may be repeated unless managed
properly. In order to parallelize event graph generation and engineer
resiliency to individual worker failure,7 Bigtable is continually updated
with the results of all worker processing. That is, for any given event
being evaluated within a Dataflow pipeline, all worker output is persisted
to Bigtable.8 If the same event happens to be processed multiple times

6	� For example: 37 (OrderID), 54 (Side), 55 (Symbol) and 30 (LastMkt)
7	 This is discussed more in section 2.2.3

Figure 1 depicts a visualization of the end-to-end Google Cloud Dataflow pipeline for the ingestion and linkage components, with the major
architectural pillars detailed in the subsequent sections.

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 3

because of worker failure (i.e., multiple processElement()invocations
with identical ProcessContext), then it will ultimately derive to
an identical record within Bigtable, as opposed to creating a duplicate
event with identical properties.

This characteristic of random event arrival and inevitable worker
transience is largely what drives the need for a durable, distributed
persistence tier. By mere virtue of the total number of workers that
must be deployed to accommodate the data volumes in accordance
with service level agreement (SLA) constraints, arbitrary worker failure
is almost a statistical certainty.9 The platform must be resilient to these
failures and ensure that the persistent tier is left in a consistent state at
all times. It is in this area in particular where Bigtable’s strength becomes
clear. By capitalizing on Bigtable’s native idempotency characteristics,
the processing algorithms are free to be massively parallelized in their
execution. No further synchronization points are necessary once a
particular mutation has been confirmed by Bigtable. Using Dataflow
and Bigtable together, system capabilities may be expressed as pure
functions, left to execute under Dataflow’s purview with all cumulative
progress kept consistent by Bigtable and with in-flight failures retried
automatically.

Prior observations of this stage indicated that the ingestion process
places high demand upon I/O capacity. As in most platforms that
scale hardware resources horizontally, meeting the demand for a
particular processing SLA is achieved by allocating additional segments
of the input data universe across more worker nodes.10 The ingestion
subsystem of this latest testing effort, originally developed using
the HBase API and deployed with Hadoop, was ported to use the
abstractions and facilities of the Cloud Dataflow SDK (now Apache
Beam) and the Google Cloud Dataflow runtime environment.11

In contrast to the combination of Hadoop and HBase API originally
used, applying the Dataflow SDK and cloud runtime environment to
the workload yields several clear advantages for development teams.
These include:

•	 Decreased infrastructure management footprint

•	 �Automatic scaling of worker nodes based upon velocity
of input data

•	 �Additional diagnostics and insight into worker operations via
the Google Cloud Console

Bigtable’s fundamental column-oriented model means that mapping
normalized relational schemas one-to-one is neither practical nor
recommended. Instead, Bigtable employs the concept of “column
families,”12 which is fundamental to many NoSQL schema designs.13
This means that all entity properties reside within a single table, and
any relational joins between entities must be performed by the application
programmer. Stylistically, entity properties tend to be self-contained in
a single “Big” table. Table 1 illustrates the schema employed for the
event linkage process. In principle, FIX messages are less arduous to

persist to NoSQL-styled databases vs. relational databases, since the
FIX data dictionaries (i.e. schemas) themselves employ quite a bit of
nesting and relationships at the individual entity level.

For the chosen Bigtable schema, entity data and the necessary entity
relationships are kept within separate column families. The Data column
family contains the persisted tag values from each validated FIX message.
The Link column family contains the information necessary to derive
the event relationships, represented in a way that reflects the industry’s
own mechanisms for designating counterparty relationships.14

The ingestion process enforces valid FIX messages and subsequently
loads the relevant FIX tag values into their respective destinations
within the Data column family.

Validations against externally maintained datasets are also performed
on the input FIX messages during this stage, such as validating
that events use identical reference symbology for instruments and
participant identifiers.

These validations generally fall into one of three separate categories:

•	 �Structural correctness of submission syntax (in this case, FIX 4.2)

•	 �Parent/Child event matching based on a specific property of the
original data (i.e. parent and child order identifiers)15

•	 �Contextual validation, such as validating that a participant is
recognized and that no messages are using deprecated symbology

First, the formal correctness of data is confirmed during ingestion,
such as validating that the value submitted for a particular numeric
data field is devoid of alpha characters, and storing the result in the
*Valid column.

8	� Specifically, the output of a ParDo’s implementation of DoFn.processElement() as defined in the Dataflow SDK
9	 Dean (2008)
10	 Palmer, et. al (2015) supra
11	� The Google Cloud Dataflow SDK was recently accepted as incubating by the Apache Foundation, and renamed to Apache Beam
12	 “Designing Your Schema” – https://cloud.google.com/bigtable/docs/schema-design
13	� “Column (Family) Databases” – https://ayende.com/blog/4500/that-no-sql-thing-column-family-databases
14	� CAT NMS Plan - “SRO NMS Plan Industry Call” at http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf
15	� Öhman (2013)

Column Family Columns

Data •	 Quantity
•	 Source
•	 Destination
•	 Symbol
•	 ChildSymbol
•	 SymbolValid
•	 SymbolMatch
•	 Side
•	 ChildSide
•	 SideMatch

Link •	 Parent RowKey
•	 Child RowKey
•	 Merge RowKey
•	 Grandparent ID

Error •	 Error Status

Table 1: Simplified Bigtable Schema

https://cloud.google.com/bigtable/docs/schema-design
https://ayende.com/blog/4500/that-no-sql-thing-column-family-databases
http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 4

While each non-root event is tagged with its parent Link column family,
the same pattern is applied for the columns named CHILD_* in the
Data family. This allows for simple data scans and parallel processing of
event context. As each market event confirms that its children employ
identical reference symbology, for instance, it can be confirmed that
the whole lifecycle is predicated upon that same foundation. Since the
information is grouped within the dedicated column family, the total
amount of data transferred between Bigtable and the worker nodes
performing these operations is minimized.

This seemingly minor optimization becomes significant considering the
sheer number of worker routine iterations. Application programmers
commonly demand more information from a repository than is strictly
necessary for a particular use-case round-trip,19 but when computing
at the petabyte scale, efficiency is crucial. To put this into perspective,
during our 60-minute, 25 billion-record test, saving one byte per
record is the equivalent of reducing the overall sustained bandwidth
requirements by nearly 56 Mbps:20

Given a single byte per record:

Processed per second over the course of an hour:

Converted to megabytes:

Converted to megabits per second:

Next, the event’s own data point is matched for equality with the child’s
data point. A success or failure is marked in the *Match column,
allowing for the flagging of orphan events.

Finally, the data point might be checked against a set of rules or an
external system to confirm its correctness. For example, the system
must already know participant identifiers and should be able to identify
and flag the use of deprecated symbology. The results of these
contextual checks are also stored in the *Valid column.

These types of issues can therefore be iterated simply via queries to
Bigtable on those Boolean columns. Additional details pertaining to the
processing errors for that event are stored in the Error column family
to simplify tracking and diagnostics.

1.2.2 Lifecycle construction
The output of the lifecycle construction stage is a graph of related
market events that represent complete order lifecycles.16 During
linkage, the algorithm must address the limitation of each individual
event possessing only a reference to its most direct parent, or a null
reference indicating that the event represents the root of a particular
order lifecycle.

Part of the lifecycle algorithm is responsible for maintaining the “root”
node, or genesis event, which we refer to as the “grandparent,” that
ultimately represents the oldest ancestor of a complete order lifecycle.

This limitation emerges as an artifact of current U.S. equity market
structure: by the time an order has been filled in its entirety, the overall
accumulation of shares in order fulfillment will have originated from an
indeterminate set of individual market participants. Additionally, parent
or child orders may be cancelled (and/or replaced) in whole or in part
before fulfillment. Furthermore, each participant is only knowledgeable
of, and hence can only report on, its own direct interactions with
individual counterparties per market event. By the time an order graph
terminates, the component shares may have been aggregated and
disaggregated with other orders several times.17 To reconstruct the
complete order lifecycle, a linkage strategy commonly referred to as the
“daisy chain” model is used.18

16	� “Understanding Order Execution” – http://www.investopedia.com/articles/01/022801.asp provides an introduction to order execution logistics from a retail trader’s perspective
17	 Öhman, (2013) supra
18	� See SIFMA Whitepaper - “Industry Recommendations for the Creation of a Consolidated Audit Trail”, see also CAT NMS Plan - “SRO NMS Plan Industry Call” –

http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf pp17
19	� “10 More Common Mistakes Java Developers Make When Writing SQL”, #2 – https://blog.jooq.org/2013/08/12/10-more-common-mistakes-java-developers-make-when-writing-sql/
20	� Google Search Results: “ 25e9 bytes / 1 hour in Mbps” – https://www.google.com/?q=25e9%20bytes%20/%201%20hour%20in%20Mbps

25,000,000,000 records * 1 Byte = 25,000,000,000 Bytes = 25e9 Bytes

6,944,444 B/s25e9 Bytes
60 minutes

25e9 Bytes
3600 seconds= =

6,944,444 b/s = 6.944 MB/s

6.944 MB/s = 55.5 Mb/s

http://www.investopedia.com/articles/01/022801.asp
http://www.catnmsplan.com/web/groups/catnms/documents/catnms/p197375.pdf
https://blog.jooq.org/2013/08/12/10-more-common-mistakes-java-developers-make-when-writing-sql/
https://www.google.com/?q=25e9%20bytes%20/%201%20hour%20in%20Mbps

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 5

+-----------------+--------------------------------+------------+-------------+------------+

| Last modified | Schema | Total Rows | Total Bytes | Expiration |

+-----------------+--------------------------------+------------+-------------+------------+

| 24 Mar 11:52:33 | |- id: string | 26459506 | 6884653269 | |

| | |- Parent: string | | | |

| | |- GrandParent: string | | | |

| | |- timestamp: string | | | |

| | |- EventId: string | | | |

| | |- ReporterId: string | | | |

| | |- Child: string | | | |

| | |- CustomerId: string | | | |

| | |- CustomerIdValid: string | | | |

| | |- side: string | | | |

| | |- CHILD_side: string | | | |

| | |- symbol: string | | | |

| | |- CHILD_symbol: string | | | |

| | |- CHILD_ordType: string | | | |

| | |- eventType: string | | | |

| | |- brokenTag: string | | | |

| | |- ReporterIdValid: boolean | | | |

| | |- SideMatch: boolean | | | |

| | |- SymbolMatch: boolean | | | |

| | |- SymbolValid: boolean | | | |

21	 Palmer, et. al (2015) supra
22	 Simba ODBC – http://www.simba.com/drivers/bigquery-odbc-jdbc/
23	 “Data types” – https://cloud.google.com/bigquery/preparing-data-for-bigquery#datatypes

1.2.3 Lifecycle publication
The original solution architecture did not specify any native mechanism for
visualization of the derived lifecycles.21 With this test iteration, given the
introduction of Cloud Dataflow support for both Bigtable and BigQuery,
we decided to include a stage near the conclusion of the pipeline that
persists derived linkage results to a BigQuery dataset, in order to leverage
its rich support for a broad array of third-party analytics.22

This was performed by flattening the Bigtable column families and
only using the top level of column data (ignoring any underlying nested
structures). For improved performance and an optimal footprint of
at-rest data, BigQuery’s native data types were used.23

The derived BigQuery schema is opportunistically denormalized. For
example, the CHILD_* columns allow the analytics tool to outline potential
issues with event submissions without resorting to joins or multi-table
SELECT statements. The same principle applies to the Error column family,
which provides additional details around why a particular event was flagged.

The following illustrates the output of bq --pretty show for the
BigQuery schema used by Dataflow to facilitate post-processing
analytics.

http://www.simba.com/drivers/bigquery-odbc-jdbc/
https://cloud.google.com/bigquery/preparing-data-for-bigquery#datatypes

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 6

24	 Palmer, et. al (2015) supra pp 5
25	 “Bidders for SEC’s CAT System Narrowed to Six from 10” – http://www.wsj.com/articles/bidders-for-secs-consolidated-audit-trail-system-narrowed-to-six-from-10-1404247796
26	 = SEC Rule 613 supra
27	� A Market Participant Identifier (MPID) is a unique symbol identifying a specific trading unit registered with a national securities exchange or association. For example, the

MPID for Morgan Stanley is “MSCO”.

Figure 2: Market Reconstruction Scatterplot

2 Recapping previous efforts

2.1 Items outstanding from the original white paper
While the total volume of data submitted during 2015’s testing campaign
did not represent the full extent of a typical U.S. equities trading session,
the solution architecture was observed to exhibit near-linear scalability.24
In contrast, for the updated system, the target volume was escalated to 25
billion order events, with the goal of deriving the requisite linkages among
them in a single hour.

This particular benchmark was selected because it represents nearly
double the estimated “58 billion” daily events projected for “the world’s
largest repository of securities transaction data”25 and also implies that a
four-hour window would provide regulators with the ability to reconstruct
market events without a protracted duration of interim processing.26

We first began the testing campaign targeting a volume of one percent of
25 billion messages end to end, with continual, incremental adjustments
to key configuration parameters (such as worker machine type and count)
performed between iterations. Insights emerged during each step. For
example, by the 10 percent test, it became apparent that the mere act
of logging debug messages presented us with a material degradation of
algorithmic performance. Even if a particular logging implementation
is implemented in linear time, every operation – no matter how trivial

– does accumulate to yield a non-trivial footprint at this scale. Hence,
eliminating non-essential code is an absolutely crucial step in maximizing
the performance of a pipeline.

In order to provide high-fidelity inputs representing a cross-section of
market activity, it was necessary for us to manufacture a data generator for
fictitious events depicting the order lifecycles of diverse market participants.
Preliminary versions of the tool offered simple procedures that generated
an assortment of static lifecycles, varying only in their randomly generated
prices, symbols and MPIDs.27 As this mechanism evolved alongside the
solution architecture, it has been consequently expanded to produce
increasingly complex market event lifecycles. This generative process
was constructed using a Markov Chain, allowing us to parameterize the
likelihood of a given event at any stage of an order lifecycle.

BigQuery has continued to provide the primary method for querying and
accessing the post-processed order lifecycles. A visualization front-end was
prototyped to showcase user interface (UI) concepts that facilitated the
analysis and visualization of the massive volumes under the MRP’s purview.
The following is a screenshot from the UI prototype that takes advantage of
the BigQuery API within a single-page application (SPA), combining both
the derived lifecycles and public market data to ultimately provide the means
for reconstructing point-in-time market activity.

http://www.wsj.com/articles/bidders-for-secs-consolidated-audit-trail-system-narrowed-to-six-from-10-1404247796

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 7

2.2 Addressing prior limitations
One of the motivations for revising MRP components was to address
the limitations of the original solution. In this section, we describe how
the addition of Google Cloud Dataflow and Google BigQuery to the
solution architecture impacted the observed performance results and
the overall experience in building and using the system.

The following sections correspond to the limitations detailed in our
original white paper28 and explain how they are addressed within the
latest testing campaign.

2.2.1 Formalized testing of reads not completed
In 2015’s testing campaign, measurement of Bigtable read performance
was not explicitly broken out. During this exercise, however, measurement
of read operations has now been added to the second stage of the pipeline.
This stage builds the order lifecycles before publishing them into BigQuery.

2.2.2 Cannot possibly account for all possible
order scenarios
We have increased the capabilities of our data generator to expose the
lifecycle builder to a wider variety of lifecycle scenarios. We believe this
yields a much more realistic simulation for reconstruction scenarios overall.

2.2.3 No evaluation of durability
When running parallel workloads at this scale, it is inevitable that some
workers will fail midstream, for any number of reasons. The data
graphs and worker population of the linkage process must be resilient
amid both rapidly evolving state and worker ephemerality.

A particularly appealing feature of Dataflow is the ability to maintain
a consistent worker population and preserve exactly-once within the
pipeline processing guarantees when these inevitable worker failures
are encountered. When a worker fails mid-pipeline, Dataflow will
automatically restart the defunct worker process and re-execute the unit
of work that was in-flight.

For its part, Bigtable is responsible for maintaining the durability and
correctness of order lifecycles. Specifically, in the event that a portion
of the Dataflow job fails and is subsequently retried, side effects, like
writing to Bigtable are also retried, meaning a single record may be
written to Bigtable multiple times. However, the final output is still
correct, as Bigtable resolves these writes and returns only the latest
version to downstream pipeline components. This is made possible
by, and shows the importance of, having deterministic record UUIDs
when using side effects in Dataflow.

2.2.4 Cluster sizing
Given the size of this load test and the methodical iteration practices
employed, we are confident that we have arrived at an optimal overall
configuration.29 Observations indicate that the worker CPU-to-Bigtable
node ratio scales linearly and optimizes the configuration for the
respective compute and throughput-bound tasks.

The exercise30 to determine optimal cluster sizing started with a

28	� Palmer, et. al (2015) supra pp 8 table 4
29	� See 3.2 Results
30	� See 3.2.2 Resources consumed per target workload
31	� See 4.4 VM sizing
32	� See 4.7 Bigtable splits
33	� Chang, et. al (2006) “Bigtable: A Distributed Storage System for Structured Data”
34	 See 4.7 Bigtable cluster distribution and scaling

fractional workload of one percent and assumed that all individual
service resources would scale linearly. This assumption was predicated
upon the belief that the custom business logic executed by Dataflow
was free of locks, latches or synchronization points. The specific
parameters used to instrument the various components from a sizing
perspective were:

•	 Number of nodes in Bigtable cluster

•	 Dataflow worker machine types31

•	 Number of Dataflow workers

•	 Bigtable split ratio32

The ultimate goal when deciding on candidate configuration parameters
is to yield maximum utilization of all component resources, but stopping
short of queuing work at any tier. When scaling horizontally, additional
resources are brought online when existing resources are at capacity.

All test iterations were closely monitored and fine-tuned. If resource
metrics indicated that there was room for additional improvement,
then there was always a prior baseline established for comparison.
For example, Dataflow worker machine types were adjusted (while
maintaining the same number of cores overall) in order to optimize
the ultimate network footprint between Dataflow and Bigtable. By
keeping granular performance statistics across all tiers of the stack, it
was straightforward to evaluate specific tactical design approaches in
the pursuit of an optimal configuration overall.

2.2.5 Failure to account for rebalancing and scaling
of the Bigtable cluster
Bigtable will automatically attempt to learn data access patterns, and
subsequently rebalance its region server definitions (also referred
to as “splitting” the cluster). The HBase shell allows one to specify
splits and hence influence the size of Bigtable’s tablets.33 For the
purposes of this testing campaign, the split ratio upon which
we ultimately decided was found to be sufficiently optimized.34

However, we expect that any ratios chosen would prove optimal only
under specific, well-defined workload scenarios. Hence, organizations
looking to conduct similar exercises must do so in the context of their
own particular infrastructural constraints.

There exists a multitude of disparate configuration parameters that
define each test’s dimensions, such as worker node machine types, worker
geography, and the disk size of cluster nodes. We found that managing
these configurations diligently enables more precise measurements and
higher-fidelity iteration comparisons, allowing one to truly pinpoint
each tier’s contribution to the overall resource footprint.

The resource measurements are not limited to simply the computing realm.
One key economic benefit of a cloud computing model is the transparency
of resource accounting, with the ability to access resource utilization
programmatically. This allows teams to easily add the cost dimension to
their infrastructure testing model, and use the resulting metrics to further
inform architectural decisions, embedding operating expenditures among
the metrics used to evaluate a particular architecture’s overall suitability.

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 8

2.2.6 Bigtable’s programmatic interface is limited to
the HBase API
Using the HBase API enabled us to leverage existing tools (in this
case, the HBase shell) to create and optimize our tables. One way we
accomplished this was by passing in the region split parameters when
the tables were initially created.

In late 2015, Google released a Cloud Bigtable I/O connector for the
Dataflow SDK.35 This capability gave the FIS engineering team the
ability to integrate Bigtable and the Dataflow execution pipelines in a
more standardized fashion. The previous design used the HBase API to
communicate with Bigtable from within custom pipeline code. In contrast,
representing Bigtable as a Dataflow I/O connector reduces some risk of
abstraction leakage36 and, given the standardized interfaces and API model
employed by the Dataflow SDK, promotes reusability, modularity and
standardized interfacing among the project’s customizations.

2.2.7 No ad-hoc SQL for analytics
Recently, there has been a trend of product releases offering
SQL-compliant APIs for interacting with NoSQL database platforms.37

35	� “Dataflow Connector for Cloud Bigtable” – https://cloud.google.com/bigtable/docs/dataflow-hbase
36	 Spolsky (2002)
37	� Tools such as Apache Phoenix, Crate.IO and Apache Drill are some examples. The latter draws inspiration from Dremel, Google’s own proprietary ancestor to BigQuery.
38	� “Why SQL Is Important” – VoltDB – https://voltdb.com/why-sql-important
39	� Cloud Bigtable and the HBase API – https://cloud.google.com/bigtable/docs/bigtable-and-hbase
40	� Palmer, et al. (2016)

Given the existing installed base and popularity with end users, support
for SQL as a query API is desirable.38 Yet, until recently, the modern
NoSQL landscape had offered limited SQL interfaces, instead preferring
custom programmatic APIs or resorting to an implementation of “SQL-
like” capabilities.

At the time of writing, Bigtable supports the standard HBase API
for issuing queries, but no direct support for queries written in a
SQL or quasi-SQL syntax.39 However, our ultimate vision for market
reconstruction and forensic activities indeed includes a SQL interface
at the “last mile” in order to facilitate the independent efforts of
business analysts and market regulators, and to capitalize upon its broad
familiarity among industry practitioners.

Google’s BigQuery managed database service, on the other hand,
employs a dialect of SQL that analysts should find quite familiar.
BigQuery also provides many analytical functions directly, beyond
those observed in common vendor-specific SQL dialects. Even
though still in Beta, Standard ANSI SQL is supported, too. In
addition, BigQuery provides a mature REST interface secured by
Google Authentication. This interface has been extremely helpful in
the development of front-end analytic tooling without the need to
deploy a full-blown application server tier between the browser and the
event repository.40

https://cloud.google.com/bigtable/docs/dataflow-hbase
https://voltdb.com/why-sql-important
https://cloud.google.com/bigtable/docs/bigtable-and-hbase

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 9

41	 The second part of the pipeline was never successfully executed to completion, therefore no time measurement exists
42	 See 4.6 BigQuery import

3.2 Results

3.2.1 Executed runs

Target
workload (%)

Messages
(billions)

Bigtable
nodes

Dataflow
worker cores
(machine type)

Ingestion
duration
(minutes)

Lifecycle
generation
(minutes)

BigQuery
import
(minutes)

1 0.25 20 80	 (n8) 32 35

5 1.25 175 400	 (n8) 20 36

10 2.50 350 320	 (n32) 35 40

20 5.00 700 960	 (n32) 25 n/a41

40 10.00 1,400 1,920	 (n32) 35 16 120

80 20.00 2,800 7,680	 (n32) 34 15 180

100 25.00 3,500 9,600	 (n32) 32 18 1842

Table 2: Test Campaign Metrics

3 Scaling up

3.1 Approach, sizing and assumptions
To reach the target throughput goal of 25 billion events processed per
hour, multiple runs of the one percent (250 million messages) workload
were executed. This drove our estimation of the necessary resources
required for the execution of a 100 percent workload.

Individual Google Cloud Platform (GCP) services may possess their
own service-specific limitations. For example:

•	 �Maximum compute allocation per Dataflow job: 10,000 cores

•	 �Maximum bucket size from which BigQueryIO can import data:
10,000 objects

The observations illustrated in Table 2 represent averages derived from
multiple test iterations for the particular resource configuration indicated.

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 10

3.2.2 Resources consumed per target workload

0

500

1000

1500

2000

2500

3000

3500

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

#	Dataflow	worker	cores #	Bigtable	nodes

Figure 3: Dataflow Worker Cores (Left) vs. Bigtable Nodes (Right) – Dataflow Worker Cores from 8,680 to 9,600 Overlap with Bigtable Nodes from 2,800 to 3,500
(Source: Table 2)

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 11

4 Discussion

4.1 Key findings
Our observations indicate that, when employed interdependently, the various
services of the GCP yield a solution architecture that scales nearly linearly.

While employing GCP as a computing provider relieves the
infrastructure management burden from application and operations
teams, data processing at this scale still demands a measured approach
in order to realize maximum benefit. For applications processing such
massive volumes of data, miniscule inefficiencies that might be ignored
without consequence at smaller scales can, in fact, have considerable
performance implications. Therefore, in order to identify and
forestall potential workload bottlenecks, it is crucial to produce
thoroughly-tested and highly-optimized code, while continually
measuring key performance metrics across all architectural tiers.

4.2 GCP quotas
Despite cloud computing’s promise of virtually unlimited, on-demand
computing resources, by default, GCP does impose a limit to a
project’s immediately addressable computing resources. Since quotas
are configured on a per-project and per-service basis, conducting a
large-scale, end-to-end exercise such as this requires the coordination
of multiple grants of quota escalation platform-wide. In many

1

2

4

8

16

32

64

128

1% 5% 10% 20% 40% 80% 100%

Ingestion	duration	(minutes) Lifecycle	generation	&	BigQuery	 import	combined	(minutes)

Lifecycle	generation	 (minutes) BigQuery	 import	- JSON	(minutes)

BigQuery	 import	- CSV	(minutes)

3.2.3 Total execution time in minutes per target workload

instances, a quota insufficiency in one service area manifests itself
as a side effect within a separate service area. A common example
is breaching an underlying Google Compute Engine memory, core
or disk quota limitation, despite Dataflow worker counts being well
within the default worker and job quota thresholds. In planning the
execution of such workloads, it is helpful for teams to forecast their
consumption of underlying resources, compare that forecast to a
project’s existing quota levels, and request threshold limit adjustments
from Google accordingly.

For the architecture described herein, the specific quotas adjusted from
GCP project defaults were:

•	 �Compute Engine resources (cores, memory, IP, attached storage)

•	 Cloud Bigtable cluster size

•	 GCP limits as described in section 3.1

•	 Individual API quotas43

For API quotas specifically, using a large number of smaller workers
for a particular pipeline can lead to more rapid starvation of available
resources, since each worker node imposes its own API footprint
when communicating with the Cloud Dataflow controller process. In
the event that an API quota threshold is breached repeatedly, it may
be beneficial to increase worker throughput by employing a smaller

43	� “Dataflow API” from the Google Cloud Platform console – https://console.cloud.google.com/apis/api/dataflow.googleapis.com/usage

Figure 4: Stage Processing Time in Minutes (Vertical Axis, Base-2 Logarithmic) of the Target Message Amount (Horizontal Axis) (Source: Table 2)

https://console.cloud.google.com/apis/api/dataflow.googleapis.com/usage

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 12

number of larger workers (i.e. scale vertically). Most quota breaches
experienced during these exercises have in fact been of this “second
order” variety. Thus, while linear application response is critical to a
solution’s ability to scale horizontally, ignoring the vertical dimension
to sizing Dataflow pipelines could result in missed opportunities
for valuable optimizations.

Quotas are typically granted to GCP services on a per-project,
per-region basis.44 Dataflow jobs, Bigtable clusters and Cloud Storage
buckets can also be specified on a per-region basis. When managing
quota limits, distributing job workloads according to region can be
helpful in managing a project’s resource expenditure.45

4.3 Worker ramp-up and tear-down time
When employing large numbers of Dataflow workers, ramp-up
latency can be considerable as the Dataflow resource coordinator adds
worker nodes in batches in response to escalating demand. In order
to reduce this autoscaling latency, and because the specific workload
goal of each iteration was known in advance, the team developed a tool to
preempt the instantiation of pipeline worker nodes,46 allowing the actual
Dataflow pipeline activity to start in response to a Cloud Pub/Sub message
instead. This can be viewed as starting the performance test with a warm
cluster, since it allows processing at full throttle for the entire pipeline
duration. When all workers that have been allocated for a particular job are
ready, an out-of-band message is sent, received by a PubSubIO instance and
the pipeline execution begins, capitalizing on all available workers.

Equally, Dataflow jobs do not report completion until all associated
pipeline workers have been shut down. However, the shutdown process
for workers begins when there are no more active ParDos within
the pipeline, and does not wait for any downstream I/O operations
to complete. Thus, projects are not billed for non-useful Compute
Engine time even within an otherwise active pipeline. Developers must
be circumspect with regards to pipeline architecture when deploying
within a metered cloud environment, as any inefficiencies translate
directly into the ultimate cost of computing the workload.

4.4 Worker machine type sizing
The sizing of the workers is a crucial characteristic of the Dataflow
pipeline as it directly impacts Bigtable’s throughput capabilities. Too
few nodes will not allow the workload to extract Bigtable’s maximum
throughput yield. Too many nodes, on the other hand, can result in
excessive timeouts and retries that can significantly contribute to
throughput degradation.

As evidenced by our results, at smaller workload sizes, n1-standard-8
instances scaled better – a characteristic shared by earlier test results.47
At a larger scale, n1-standard-32 instances yielded the best performance.
This is a result of Bigtable’s incremental network footprint as well as
the footprint imposed by Dataflow job coordination.

4.5 Microbenchmarks
Given the sheer amount of processing power required for big data jobs,
writing solid, optimized code is an absolute necessity. While we kept the
source code underlying the test to strictly idiomatic Java, nevertheless,
we adhered to the following performance optimization practices:

•	 �Eliminate debug logging and/or otherwise arbitrary writes to
System.out

–– �In the case of exception logging, framework-specific
methods should be used. Cloud Dataflow uses custom
bindings to emit log events of all the common logging
frameworks48 to Cloud Logging. But if a stack trace is
logged to STDOUT, this will cause a single log event per
stack element/line in STDOUT, which is also
very expensive.

•	 �Cache local variables and derived computations, where possible

•	 �Use StringBuilder in lieu of direct concatenation, where
necessary

•	 �Use Java 8’s java.time.* package rather than java.util.Date and
its cohorts

•	 Limit the use of Java’s native exception model49

•	 �Capitalize upon the Dataflow SDK’s use of the template method
pattern and organized our initialization routines appropriately.50
We used startBundle() and finishBundle() to initialize and
destroy resources. Invocations of processElement() should not
be used to perform initialization duties for any dependent logic
embedded within.

We found that the Java Microbenchmark Harness (JMH)
was a helpful tool for reliable microbenchmarking during regression
tests of both the functional and the non-functional requirements.51

4.6 BigQuery import
The implementation of the Dataflow SDK BigQuery adapter originally
used for the test employed Javascript Object Notation (JSON) as its
exchange format. Compared to other protocols, JSON is relatively
verbose as each representative object is self-describing, leading to a large
amount of data going over the wire being redundant. Furthermore, the
additional markup with every record results in additional processing time
as the import process must read in (then discard) the additional text. Since
the object schema for each record was highly structured and uniform
record-to-record, there was no particular upside to the JSON encoding
for our specific use case.

Additionally, given the sheer amount of data being imported,
fine-tuning was required to put a ceiling on the number of files that
the Dataflow SDK BigQuery adapter had to address. If the number of
temporary JSON files created by BigQueryIO exceeds 10,000, then the
entire BigQuery import can fail.

44	� “Resource Quotas” within the Google Cloud Platform – https://cloud.google.com/compute/docs/resource-quotas
45	� The flip-side, of course, is that buckets and workers that are regionally co-located exhibit superior performance
46	 PubSubStarter is available from https://github.com/SunGard-Labs/dataflow-whitepaper
47	 Palmer, et. al (2015) supra
48	� “Adding Log Messages to Your Pipeline” – https://cloud.google.com/dataflow/pipelines/logging
49	� One third-party library employed for the test extensively used the exception class hierarchy and control flow during initialization. The performance implications were severe enough that our team

resorted to overriding the library’s fillStackTrace() method to ameliorate some of the performance impact, as more invasive adjustments to the library were impractical.
50	� https://en.wikipedia.org/wiki/Template_method_pattern
51	 JMH – http://openjdk.java.net/projects/code-tools/jmh/

https://cloud.google.com/compute/docs/resource-quotas
https://github.com/SunGard-Labs/dataflow-whitepaper
https://cloud.google.com/dataflow/pipelines/logging
https://en.wikipedia.org/wiki/Template_method_pattern
http://openjdk.java.net/projects/code-tools/jmh/

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 13

Hence, for the 100 percent load test iteration, we authored a custom
BigQuery import function that generates a CSV file per worker and
saves the files (using TextIO from the standard Dataflow SDK) to
Google’s cloud storage service. This approach allowed us to reach
the desired target execution time and also resulted in a very simple
implementation. Since the FIX tags being persisted to BigQuery were
known and static, no additional third-party libraries were used, which
reduced any uncertainties related to performance characteristics under
the current scenario. Only simple operations using StringBuilder and
byte[] were necessary – again, backed by JMH tests to measure relative
performance impact on each iteration.52

This is an excellent example of the seemingly small implementation
details, often going unnoticed for smaller workloads, that can result in
a material performance footprint when accumulated over millions of
transactions per second.

4.7 Bigtable cluster distribution and scaling
By default, Bigtable analyzes table keyspaces and automatically
compacts and rebalances data across cluster nodes. However, given
the specific scale and workload performance that was required as part
of this effort, it was decided to explicitly specify how Bigtable should
distribute table data physically. This can help forestall unnecessary
compaction operations and optimize the distribution and transfer of
table data within the cluster as it scales up. This can be thought of as
similar to the practice of explicitly specifying a large fixed heap size
and/or garbage collection parameters to Java virtual machine (JVM)
processes, to optimize the JVM’s time spent on heap maintenance.

Each market event message is tagged with a UUIDv4 value that is
randomly and uniformly distributed over the entire keyspace. Because
of this distribution profile, it was decided to explicitly configure the
splits at the time of table definition. To avoid performance degradation
stemming from the “hot” node phenomenon that can plague tables
with poor keyspace distribution, Bigtable will periodically evaluate
the key space distribution of the table. As UUIDv4 values are, in
general, random and therefore exhibit broad distribution over the
entire keyspace, it is nearly impossible for Bigtable to glean a legitimate
pattern from which to make rebalancing decisions, especially when
the table contains only a small percentage of its ultimate volume. This
could lead to a situation in which Bigtable assumes a row key, such as
“123e4567-e89b-12d3-a456-426655440000,” as the upper boundary
of the keyspace – which is not necessarily correct based upon the entire
ID space. Before data is ingested, the keyspace distribution is already
known (which may not be the case in other circumstances), so it is
sensible to direct Bigtable accordingly.

Based on our previous tests with smaller datasets and running the
same data set using multiple factors, we found that a factor of 24 times
the amount of Bigtable nodes provided optimal throughput. In other
words, for a Bigtable cluster with 10 nodes, 240 splits are used during
table creation.53

The process behind arriving at this factor is lengthy, but follows a
distinct pattern. The Dataflow worker nodes must be sufficiently
sized such that they themselves are not the limiting factor. When this
has been achieved, a complete run is conducted while monitoring
Bigtable’s write throughput performance via the Google Cloud
Console. If the observed write performance experiences significant
deterioration after its initial increase, yet ultimately reaches its
final write performance later on, the deterioration is quite likely
due to Bigtable’s rebalancing. Eventually, the split initially chosen
becomes less optimal as the totality of the dataset (and its associated
keyspace) converges.

At this point, iterations of adjusting the split count then re-running
the test (while keeping all other factors stable) should improve the
observed throughput.

This process is repeated until no further deterioration is observed.
One aspect to validate during this exercise is that the increased Bigtable
performance does not encounter additional bottlenecks elsewhere
within the solution.54

4.8 Using Bigtable for stateful pipelines
The ability of application logic to scale linearly based upon workload
demand is inextricably linked to the logic’s reliance upon a shared state.
The facilities and API semantics of the Dataflow SDK abstract the
majority of this complexity from the software engineer. This is not to
say that developers are inoculated against all pitfalls; however, with no
way to enforce shared-state restrictions at compile time, there remains
ample opportunity for developers to introduce inefficiencies.55 In order
to dispatch logic upon the inbound datasets with near-linear scaling
performance, all information required by the processElement()
method must be known at the time of entry. Dependency upon
any external, mutable and shared data source introduces non-
functional hazards into the system, such as performance-degrading
synchronization points.

As such, the linkage algorithm conducts its own message processing
based upon immutable input values and ensures that, over time, all
requisite information falls into the right place – not unlike the game
Tetris® where each element contributes to the greater structure by
being placed in the right position upon arrival. As further elements
are added to the structure, ultimately the final superstructure (pipeline)
representation converges.

One area where Bigtable has helped in this regard is in supporting
row inserts from multiple, parallel PUT operations, with the final row
represented by the cumulative information of all preceding PUTs.

52	 See 4.5 Microbenchmarks
53	� The Split Generator source code by FIS Global can be found at https://github.com/SunGard-Labs/dataflow-whitepaper/blob/master/src/main/java/com/sungard/dataflow/BigtableSplitGenerator.java
54	� See 4.9 Google Cloud Platform vs. private infrastructure
55	� Sferrazza, et al (2015)

CREATE ‘myTable’, {NAME=’CF1’}, {NAME=’CF2’},

SPLITS => [‘keyboundary1’, … , ‘keyboundaryN’]

https://github.com/SunGard-Labs/dataflow-whitepaper/blob/master/src/main/java/com/sungard/dataflow/BigtableSplitGenerator.java

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 14

4.9 Google Cloud Platform vs. private infrastructure
Cloud computing offers unprecedented power to consumers without the
burden of traditional, large upfront capital investment in infrastructure
and support. However, for workloads operating at terabyte or petabyte
processing scales, a circumspect and evidence-based approach to
deriving the ultimate solution architecture is necessary, to which
in-house approaches should also subject themselves. Applying small,
incremental changes that evolve the solution in small steps is preferable.
While stringently and relentlessly measuring the impact of each change
can often be tedious, this practice enabled our team to navigate the
associated architectural and engineering trade-offs with confidence.

Given the isolation of individual cloud services, they can simply
be added to the system on-demand – without an associated,
up-front capital investment. In addition to the financial advantages,
this poses great benefits to developers as well, as it removes barriers
to experimentation and potentially reduces time-to-insight.56 Different
services may be added provisionally to evaluate their suitability for a
particular function, and evidence of this suitability may be collected
to assist in arriving at an architectural decision. One does not need to
conduct a lengthy procurement cycle only to learn ultimately that the
service does not meet expectations.

This methodology is especially important as components are added
to an evolving solution architecture, since the isolation of individual
factors affecting system performance becomes more challenging and
time-consuming. Therefore, our typical approach was to conduct
initial tests with abridged datasets while constantly measuring key
performance metrics of the particular system-under-test against any
individual configuration profile.

As bottlenecks emerge in any one component, improvement efforts
should be focused there. However, it is important to note that the
“component” in question might prove to be any combination of
custom application code, external resources or even quotas imposed
by the underlying computing provider.57 Once a bottleneck is removed,
the throughput of the system is free to scale,58 and the infrastructure
underpinning the solution can dynamically and predictably align to
end-user demand.

Additionally, the segregation of each cloud service as a discrete
component facilitates performance tuning overall. When bottlenecks
emerged within any particular service, the universe of possibilities
for optimization were restricted to the specific service’s configuration
parameters. While this limitation may be a departure for engineers
who are comfortable crossing multiple OSI layers during
troubleshooting exercises, limiting the tuning parameters to a
service-specific configuration presented a clear productivity benefit for
our development team.

One practical aspect of conducting such large-scale testing exercises
of which teams must be mindful is the decommissioning of resources
between active testing iterations. While the volumes conducted in this
test are exaggerated for many typical workflows, even lower-demanding
testing iterations can consume a large amount of compute, I/O, service
and storage resources. Hence, automating the decommissioning of
resources as part of the test iteration regimen is essential for the precise
quantification of workload cost as well as for avoiding expenditure on
unproductive resources.

5 Conclusion

Based upon our findings and the overall insights gained,59 the approach
of relentlessly capturing performance metrics while increasing
workloads incrementally resulted in a very positive testing outcome. As
always, system readiness tests must be budgeted from both a human
and computing resource standpoint. The specific iterations required to
conduct massive scaling exercises entail the extensive coordination of
both systems and personnel. Thus, it is wise to plan the effort carefully,
and focus on maximizing the system’s available throughput across
every dimension of the overall solution architecture.

Mitigating the computing burn rate can be achieved by optimizing
application code and algorithms, and avoiding computationally
expensive operations when there may be simpler alternatives, such as
System.arraycopy().60 It is also worth mentioning that each major Java
version has significantly different execution behaviors with regards to
the runtime’s component base classes (String, java.math, wrapper
types, etc.). Therefore, it is helpful to conduct microbenchmarks in
tandem with the application of software engineering best practices, in
order to build evidence to support or refute assumptions and expectations
about code paths. Additionally, the refactoring of application code
often goes hand in hand with performance improvements, further
incentivizing and rewarding optimizations at this scale.

The escalation of data quantity and velocity, in no way restricted to the
financial space, portends that a move to cloud computing is desirable
and inevitable across many industry sectors. In order for engineering
teams to extract the most benefit from these capabilities, application
development approaches must evolve accordingly. Dataflow, Bigtable
and BigQuery liberate developers from most complexities underlying
big data application development and infrastructure deployments for
distributed, parallel systems. They allow programmers and engineers
to operate on a higher level, one much closer to the specific problem
domain being addressed. While this combination of services
significantly raises the bar on what even modestly-sized engineering
teams can accomplish in a short duration, extracting the maximum
symbiotic benefit undoubtedly requires adjustment from traditional
development approaches.

56	� “How Time-to-Insight Is Driving Big Data Business Investment” http://sloanreview.mit.edu/article/how-time-to-insight-is-driving-big-data-business-investment/
57	 See 4.2 GCP quotas
58	 Goldratt (1984)
59	 See 4 Discussion
60	� System’s arraycopy() is a native method that typically provides superior performance for operations on arrays

http://sloanreview.mit.edu/article/how-time-to-insight-is-driving-big-data-business-investment/

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 15

6 Acknowledgements

We would like to thank the following people for providing their help, support, and technical and domain expertise in building this next generation
prototype: Todd Ricker, Benjamin Tortorelli, Seong Kim, Meghadri Ghosh, Chris Tancsa, Petra Kass, Regina Brab and Marianne Brown at FIS,
and especially Carter Page, Solomon Duskis, Misha Brukman, Phaneendhar Vemuru, Dan Halperin, William Vambenepe and the rest of the
Google Cloud Bigtable and Dataflow teams, who have been awesome (again).

Market Reconstruction 2.0: A Financial Services Application of Google Cloud Bigtable and Google Cloud Dataflow 16

7 References

Rule 613 (Consolidated Audit Trail) https://www.sec.gov/divisions/marketreg/rule613-info.htm

N. Palmer, Y. Wang, M. Sherman, S. Just (2015) “Scaling to Build the Consolidated Audit Trail: A Financial Services Application of Bigtable”
https://cloud.google.com/bigtable/pdf/FISConsolidatedAuditTrail.pdf

J. Dean (2008) “Software Engineering Advice from Building Large-Scale Distributed Systems”

M. Öhman (2013) “A Data-Warehouse Solution for OMS Data Management”

S. Sferrazza, S. Just (2015) “Transforming Options Market Data with the Dataflow SDK”
https://cloud.google.com/dataflow/pdf/TransformingOptionsMarketData.pdf

E. Goldratt (1984) “The Goal: A Process of Ongoing Improvement”

J. Spolsky (2002) “The Law of Leaky Abstractions” http://www.joelonsoftware.com/articles/LeakyAbstractions.html

F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes, R. Gruber (2006)
“Bigtable: A Distributed Storage System for Structured Data”
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

N. Palmer, J. Chen, S. Sinha, F. Araujo, M. Grinthal, F. Rafi (2016) “Market Reconstruction 2.0: Visualization at Scale”

