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1.1 Introduction
Google Cloud Bigtable1 is the latest formerly-internal Google 
technology to be opened to the public through Google Cloud Platform 
[1] [2]. We undertook an analysis of the capabilities of Google Cloud 
Bigtable, specifically to see if Bigtable would fit into a proof-of-concept 
system for the Consolidated Audit Trail (CAT) [3]. In this whitepaper, 
we provide some context, explain the experiments we ran on Bigtable, 
and share the results of our experiments.

1.2 The Consolidated Audit Trail (CAT)
FIS (that completed its purchase of SunGard on November 30, 2015)  is a 
bidder to build CAT [5], an SEC-mandated data repository that will hold 
every event that happens in the US equities and options markets. This 
means that every order, every trade, every route of an order between 
different organizations, every cancellation, every change to an order — 
essentially everything that happens after someone enters a trade on a 
computer screen or communicates an order to a broker on a phone to 
the fulfillment or termination of that order [6]. 

There are many requirements that the SEC and the stock exchanges 
have identified for CAT [3]. Most crucially, CAT must be able to ingest, 
process, and store as many as 100 billion market events every trading 
day (about 30 petabytes of data over the next six years [7]), and this data 
must be available to regulators for analysis, monitoring and surveillance [3]. 

But the step in between is the most challenging aspect of  building 
CAT: taking a huge amount of  raw data from broker-dealers and stock 
exchanges and turning it into something useful for market regulators. 

The core part of  converting this mass of  raw market events into 
something that regulators can leverage is presenting it in a logical, 
consistent, and analysis-friendly way. Furthermore, a key aspect of  
making stock market activity analysis-friendly is the notion of  linking 
individual market events together into order lifecycles. An order 
lifecycle is the flow of  a stock market order starting from when a 
customer places an order with a broker-dealer to whenever that order 
is fulfilled (or, in some cases, cancelled or changed) [8]. Figure 1 shows 
an example order lifecycle. 

Order lifecycles can involve thousands of  market events, and there 
are millions of  order lifecycles per trading day, all which have to 
be assembled by the CAT system. In a graph theory context, order 
lifecycle assembly can be thought of  as finding the edges between 
billions of  vertices across millions of  different graphs, where only one 
configuration is correct. Throughout the remainder of  this whitepaper, 
we refer to the building of  order lifecycle graphs as “linkage.”
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Abstract
Google Cloud Bigtable is a fully managed, high-performance, extremely scalable NoSQL database service offered through the 
industry-standard, open-source Apache HBase API, powered by Bigtable. The Consolidated Audit Trail (CAT) is a massive, 
government-mandated database that will track every equities and options market event in the US financial industry over a  
six-year period. We consider Google Cloud Bigtable in the context of CAT, and perform a series of experiments measuring the 
speed and scalability of Cloud Bigtable. We find that Google Cloud Bigtable scales well and will be able to meet the requirements 
of  CAT. Additionally, we discuss how Google Cloud Bigtable fits into the larger full technology stack of  the CAT platform.

1 Background

1  Throughout this whitepaper we use the terms “Google Cloud Bigtable”, “Cloud Bigtable”, and “Bigtable” to refer to Google Cloud Bigtable. If we are referring to 
Google’s internal Bigtable or the Bigtable technology as described in the original Bigtable paper [4], it is mentioned specifically.
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Figure 1: An example of an order lifecycle. Two stock market orders from Jane and 
Ramon are combined by a stockbroker into a new order, which the stockbroker 
sends to a stock exchange. The stock exchange then completes the order. For CAT, 
the stockbroker would submit three events (the orders from Jane and Ramon, and 
the order the stockbroker sends to the stock market) and the stock exchange would 
submit two events (one event for the order received from the stockbroker, and 
another event for filling the order).

1.3 Google Cloud Bigtable as a Solution to the 
CAT Problem
Google Cloud Bigtable is a fully managed, high-performance, extremely 
scalable NoSQL database service offered through the industry-standard, 
open-source Apache HBase API [1]. Under the hood, this new service 
is powered by Bigtable [1]. Cloud Bigtable offers features that meet 
the key technological requirements for CAT. These requirements and 
features are detailed in Table 1.

2 Evaluating the Scalability of  Data 
Insertion into Google Cloud Bigtable
To determine if  Cloud Bigtable can handle the volumes of  data CAT 
will process and to obtain a benchmark of  performance, we undertook 
a series of  experiments. All the experiments involved the validation, 
parsing, and insertion of  large volumes of  Financial Information 
eXchange (FIX) messages2 [9] into Bigtable. Our technology stack and 
architecture are described in Figure 2.

Table 1: A list of CAT requirements with the applicable Google Cloud Bigtable 
feature fulfilling the requirement.

CAT Requirement Google Cloud Bigtable Feature [4]

Validate, process, store, and create 
linkages for 100 billion market 
events in 4 hours

Highly scalable, atomicity of  rows, 
and distribution of  tablets allow 
many simultaneous table operationsIdentify errors on reported events 

within 4 hours

Support heterogeneous types of  
data (e.g. options vs. regular stocks; 
completed orders vs. cancelled 
orders)

Flexible schema, support for 
billions of  columns, column data 
only written to rows that have 
values for that column for optimal 
performance

Handle new types of  linkages and 
new kinds of  orders not currently 
supported by the industry

Identify linkage errors, but be 
resilient enough to continue with 
the linkage when some events  
in the order lifecycle contain  
certain errors

Column families allow for error 
data to be written to a separate 
logical location stored within the 
same table.

Maintain a history and status of  
changes to an event and order 
lifecycle as error corrections  
are submitted

Built-in timestamping of  all 
insertions means change history is 
always kept and available for audit

Begin processing events and 
creating linkages before all data 
is submitted

Auto-balancing and compactions 
ensure optimal speeds as more data 
arrives, but reasonable costs while 
data volumes are low

Scale up quickly when demand is 
above expectations New tablet servers can be added 

to a Bigtable cluster in minutes, 
making Bigtable highly scalableTolerate volume increases up to 

25% annually without losing speed

Run queries during lifecycle linkage 
process

Nothing prevents querying 
while data is being written, and 
distribution of  data across tablets 
mean different computers can serve 
multiple requests simultaneously

Backups during linkage process for 
quick recovery

Backups are co-written with 
production data, with a quick, 
invisible switchover in case of  
failure

Affordable, with no need to 
stockpile computing resources  
used only on “worst-case” days

Cloud computing model means 
no charges for unused computing 
resources

2  FIX is an electronic communications protocol widely used in financial services. Specifically, for the tests in this whitepaper FIX messages were text strings of field-data 
pairs. Many organizations in the financial services industry hope CAT will support FIX messages [12], minimizing compliance overhead.
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Figure 2: The technology stack for our Bigtable experiments. 1: FIX messages were 
stored in Google Cloud Storage [10] buckets. Google Cloud Storage runs on Google 
File System (GFS)3 [11], which is similar to HDFS4. 2: Using Google Cloud’s bdutil 
[14] tool, Hadoop clusters were created using virtual machines running on Google 
Compute Engine [15]. No Hadoop settings were changed from the default settings 
provided by bdutil. The Hadoop clusters used Google Cloud Storage buckets as a 
shared file system instead of HDFS [14]. 3: MapReduce jobs were run on the Hadoop 
clusters. The MapReduce jobs communicated with Bigtable through the open-source 
HBase API. No default MapReduce settings were changed from the default settings 
provided by bdutil 4: Processed data was stored on Bigtable, in a custom format 
we developed specifically to CAT’s requirements. Note that Bigtable resides in a 
separate, Bigtable-only cluster from the cluster running the MapReduce jobs. This is a 
characteristic of the Cloud Bigtable service.

2.1 Experiment 1: Performance of  Different Virtual 
Machine Configurations
This first experiment compared the performance of  different virtual 
machine (VM) configurations available through Google Compute 
Engine (GCE).

Four different groups of  VM configurations are available on GCE 
(standard, highcpu, shared core, and highmem). Initial tests showed that 
the highcpu and shared core VM groups did not have enough memory 
to handle our MapReduce job, and the highmem VM group performed 
only a bit better than the standard VM group despite costing more 
money to run. Therefore, we chose to formally test only the standard 
VM group. There are five different VM configurations available in 
GCE’s standard VM group, outlined in Table 2 [16].

Table 2: Different virtual machine configurations (virtual CPUs and memory) 
available in Google Compute Engine’s standard virtual machine group [16].

Virtual Machine 
Configuration 

Virtual CPUs Memory (GB)

n1-standard-1 1 3.75

n1-standard-2 2 7.50

n1-standard-4 4 15

n1-standard-8 8 30

n1-standard-16 16 60

The costs per core are the same across the standard VM group, 
therefore we wanted the VM that gave us the best performance per 
core. Our experimental procedure:

1.  Four different clusters were created using bdutil, each having 
a total of  80 cores and a variable number of  VMs. Each cluster 
was composed entirely of  one configuration of  standard VM, 
excepting n1-standard-1 which was not powerful enough to run our 
MapReduce job. 

2.  Each cluster ran the same MapReduce job: validate 100 million FIX 
messages, parse the FIX messages into a CAT-compliant schema, 
then insert the parsed messages into Cloud Bigtable.

3.  The time to complete the MapReduce job was recorded for 
each cluster, and this time was transformed into a throughput 
measurement of  FIX messages validated, parsed, and inserted per 
second per core.

Results are in Figure 3.

n1-standard-8 gave the best results. n1-standard-4 also performed well 
but we opted to do further experiments with n1-standard-8 because 
smaller clusters are easier to manage.

The difference in performance is likely due to how many JVMs are 
created, which is based on the CPU and RAM configuration of  the 
worker node. We observed CPU underutilization for n1-standard-2 
(2 core) and n1-standard-4 (4 core) VM configurations, and CPU 
overutilization for the n1-standard 16 (16 core) VM configuration. 
By tuning the Hadoop and MapReduce settings and other system 
parameters, we could potentially get better relative performance from 
the 2, 4 and 16-core VM configurations, but to keep consistent with the 
idea of  using managed services we did not tune anything.

Lastly, relative VM performance can change as cluster sizes change, but 
this test represented a starting baseline for the remaining experiments. 
Research into the behavior of  different VM configurations with 
different cluster sizes and on the more advanced linkage engine  
is ongoing.

3  File storage at Google also involves a technology called Colossus [13] but limited public information about Colossus is available.
4 HDFS is the Hadoop Distributed File System, and was inspired by the original GFS whitepaper [17].
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Figure 3: This figure shows the number of FIX messages validated, parsed, and 
inserted into Cloud Bigtable per second per core across four different Hadoop 
clusters, each composed entirely of workers of a single VM configuration. Each cluster 
consisted of the same number of virtual CPU cores (80), but a different number of 
worker nodes. The results were standardized to allow for a per-core comparison,  
since the cost per core is consistent across all VM configurations in the figure.  
n1-standard-4 and n1-standard-8 performed similarly, but since fewer VMs are  
easier to manage we opted to rely on n1-standard-8 as the VM configuration for  
all other experiments. 

2.2 Experiment 2: Relative Performance of  Google 
Cloud Bigtable Insertion
We then measured the speed of  Bigtable insertions relative to baselines. 
Three MapReduce jobs were run, each on a single Google Compute 
Engine n1-standard-8 (8 core) VM instance. The input to all three jobs 
was 1 million FIX messages, but the outputs were different:

•  MapReduce job “GFS” processed and parsed each FIX message 
then appended the output to a text file in a Google Cloud  
Storage bucket.

•  MapReduce job “Bigtable” processed and parsed each FIX message, 
then inserted the parsed output as a row into Bigtable.

•  MapReduce job “No Write” processed and parsed each FIX message 
then did nothing — no write to anywhere.

The relative performance of  the three MapReduce jobs can be seen in 
Figure 4. The “Bigtable” job performs about half  as fast as the “No 
Write” job (47.5% as fast), and about two-thirds as fast as the “GFS” 
job (66.7%).

Figure 4: This figure shows the number of FIX messages validated, parsed, and then 
written (or not) per second across three MapReduce jobs with different output 
destinations (but otherwise identical). All jobs were run on a clusters consisting only 
of a single n1-standard-8 (8 core) worker. “Write to Bigtable” inserted all parsed FIX 
messages into Bigtable, “Write to GFS” wrote all parsed FIX messages to a textfile in 
a Google Cloud Storage bucket, and “No Write” parsed FIX messages but then did 
not write anything.

2.3 Experiment 3: Performance of  Google Cloud 
Bigtable with Increasing Job Size
The next experiment evaluated Bigtable’s performance with increasing 
MapReduce job size. This experiment primarily functioned as a basic 
check of  Bigtable insertion, as embarrassingly parallel jobs should 
not require more or less time per input unit as the number of  input  
units increases5 [18].

Clusters of  10 n1-standard-8 (8 core) VMs were used. Each cluster 
validated, parsed, and inserted a different number of  FIX messages 
into Bigtable. The amount of  time to finish each job was tracked. 
Figure 5a and 5b show the results of  this experiment.

Unsurprisingly, as seen in Figure 5b, the cluster throughput was roughly 
constant regardless of  the amount of  data processed [18].

2.4 Experiment 4: Performance of  Google Cloud 
Bigtable with Increasing Cluster Size
As a final evaluation of  small-scale6 performance, we analyzed  
the performance of  Bigtable as the number of  worker nodes in a 
cluster increased.

5  It is worth noting that MapReduce jobs have a fixed amount of overhead that does not change based on job size, and we do not explicitly take this fixed overhead into 
account. Our MapReduce jobs were all long enough (a half hour) that the impact of fixed overhead is negligible, and less than the time variation we would often see 
between different runs of the same job.  Variation in times between identical jobs is expected with large parallel systems.

6  Small being a relative term. Many large broker-dealers could process a day’s worth of FIX messages in a reasonable amount of time on the cluster sizes we tested in 
this section.
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Figure 5a Figure 5b

Figures 5a and 5b: These figures show the effect on job duration and cluster throughput as the size of the MapReduce job is increased.  All data is from clusters of 10 n1-standard-8  
(8 core) virtual machines. Figure 5a shows the amount of time required to validate, parse, and insert into Bigtable an increasing number of FIX messages. Figure 5b is a 
transformation of the same data in Figure 5a, created by dividing the total number of FIX messages in a job by the number of seconds the job took to complete. It shows the 
whole-cluster throughput of the different jobs.  The near-linearity of the lines connecting the data points in both figures show linear scaling with linearly-increasing job size.

Figure 6a Figure 6b

Figures 6a and b: These figures show the effect of increasing cluster size on MapReduce job duration and worker throughput. All data is from clusters of n1-standard-8 (8 core) 
VMs. Figure 6a shows the amount of time required to validate, parse, and insert into Bigtable 300 million FIX messages on increasingly large clusters. Figure 6b is a transformation of 
the same data in Figure 6a, created by dividing 300 million by the job duration in minutes and the number of worker nodes in the cluster. It shows the average throughput of each 
workers in each cluster. The near-linearity of the lines connecting the data points in Figure 6b shows near-linear scaling with linearly-increasing cluster size.
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Hadoop clusters of  n1-standard-8 (8 core) VMs were created in sizes 
from 5 to 20 worker nodes. Each cluster ran the same MapReduce job: 
the validation, parsing, and insertion into Bigtable of  300 million FIX 
messages. The amount of  time to finish each job was tracked. Figures 
6a and 6b show the results of  this experiment.

2.5 Experiment 5: Performance of  Google Cloud 
Bigtable with Extremely Large Clusters
After our initial observations, it qualitatively appeared we did not use 
large enough clusters to get a full understanding of  Bigtable insertion 
scalability. We were also far below the scale required for CAT. Thus, we 
undertook another experiment, similar in design to experiment 4.

First, per the instructions of  the Cloud Bigtable team, we “primed” Cloud 
Bigtable by creating a small table with a similar structure to the data we 
were about to insert. This “priming” allows Cloud Bigtable to balance 
the table out amongst many tablets prior to large-scale insertion, which 
increases performance. Then, three Hadoop clusters (in sizes of  100, 
200, and 300 worker nodes) of  n1-standard-8 (8 core) VMs were created, 
data was inserted from each cluster, and the throughput of  the clusters 
measured7. This data was combined with the data from experiment 4 
and the data from the single-worker “Write to Bigtable” insertion test in 
experiment 2, and then the universal scalability model was applied to this 
full dataset [19]. The results are shown in Figure 7, with the predicted 
scalability model and a 95% confidence band overlaid.

The universal scalability model interprets the scaling as linear, and predicts 
infinite scalability. While linear scalability is impossible, at the scale we 
measured directly Cloud Bigtable insertion still effectively scales linearly.

3 Discussion
3.1 Key Findings
•  Bigtable demonstrated the ability to handle data at CAT scale, 

with peak ingestion rates of  10 billion FIX messages per hour and 
sustained ingestion of  6.25 billion FIX messages in one hour.

•  With clusters up to 300 worker nodes, Bigtable insertion scaling 
does not begin to deviate from linear.

•  Tuning of  virtual machines, Hadoop clusters, or MapReduce jobs is 
not necessary to get good performance from Cloud Bigtable.

•  Given no tuning or optimization, n1-standard-8 (8 core) virtual 
machines provide the best performance-per-dollar.

•  Bigtable insertion (via MapReduce) job duration scales linearly with 
increasing job size.

3.2 Performance Metrics
Something not explicitly stated with our experimental results above 
is exactly how well Bigtable performed both in relation to CAT 
requirements as well as more generally. We have collected some key 
performance metrics in Table 3.

Figure 7

Figure 7: This figure shows the effect of increasing cluster size on cluster throughput 
and the induced universal scalability model. All data is from clusters of n1-standard-8 
(8 core) VMs. Data in this figure is from MapReduce jobs of both varying cluster 
size and varying job size, which may have caused inconsistencies but was necessary 
given the large spread of cluster sizes covered. The data points are the throughput 
measurements, the line is the predicted scalability as obtained from the universal 
scalability model, and the colored band is the 95% confidence band on both sides of 
the prediction. The model is linear, and infinite scalability is predicted.

Table 3: Various measurements of Cloud Bigtable performance.

Metric Approximate Performance

Maximum peak throughput, general 2.7 Gigabytes written per second

Data writable with 60 minutes of  
peak throughput, general 10 Terabytes

Maximum peak throughput,  
task-specific

2.7 Million FIX messages processed 
and inserted per second

Data writable with one hour of  
peak throughput, task-specific

10 Billion FIX messages processed 
and inserted

Maximum sustained throughput for 
one hour, general 1.7 Gigabytes written per second

Data written in an hour of  
sustained throughput, general 6 Terabytes

Maximum sustained throughput for 
one hour, task-specific

1.7 Million FIX messages processed 
and inserted per second

Data written in an hour of  
sustained throughput, task-specific

6.25 Billion FIX messages 
processed and inserted

7  We expect the instability of the large cluster results is due to the rebalancing of the tablets as our insertion throughput increased. See the “Scalability of Google Cloud 
Bigtable” subsection in the Discussion for more on tablet rebalancing.
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It is important to note that these metrics were constrained by the 
number of  worker nodes and the reserved bandwidth we provisioned 
within Google Cloud Platform, and not by Bigtable itself. Future 
testing will involve many more workers, and will reserve greater internal 
bandwidth between Google Compute Engine, Google Cloud Storage, 
and Google Bigtable.

3.3 Scalability of  Google Cloud Bigtable
Bigtable scaled extremely well — at the volumes we tested, we did not 
experience any measurable contention or coherency issues. We believe 
that Bigtable can easily handle the scale of  CAT: linear scaling was seen 
up to a level of  performance that can process and insert 1/16 of  a 
“worst-case” trading day in one hour.

However, we do want to clarify an important point: as Cloud Bigtable 
is a managed service, we could not measure the scalability of  Bigtable 
directly. Additionally, our data was automatically moved between 
tablets to increase access speeds, a process described in the Bigtable 
paper [4]. This likely had some impact on our results, but we could 
only monitor the resources communicating with Bigtable — meaning 
we could only calculate the scalability of  our Hadoop worker cluster, 
but not the Bigtable cluster directly. One way we mitigated this impact 
was by “priming” Bigtable with data similar to the data it was about to 
ingest, which would cause some of  the rebalancing work to happen 
prior to the start of  the timed jobs. This“priming” would not be an 
issue in production, it is merely necessary for proper performance tests 
on newly created tables.

3.4 Optimal VM Configurations and Tunings
Our experiment to determine the optimal VM configuration was very 
basic, and more testing is being done to optimize the worker nodes. For 
the purposes of  testing Google Cloud Platform and the Cloud Bigtable 
service we decided to keep as many default settings as possible, in the 
spirit of  managed services. However, defaults are not always optimal, 
especially with systems as complex as Hadoop, MapReduce, and Bigtable. 

For example, we believe the reason the n1-standard-16 (16 core) VM 
drops in per-core throughput from the n1-standard-8 (8 core) is due 
to a sub-optimal balance between the number of  MapReduce tasks 
spawned on the node vs. the amount of  free memory on the node. 
These settings can be adjusted manually.

Additionally, the pattern of  performance seen with single-worker 
clusters does not hold exactly at different cluster sizes, and further 
formal experiments are ongoing.

3.5 MapReduce vs. Google Dataflow
For these experiments, we used MapReduce with the HBase API 
to communicate with our Bigtable cluster. Our MapReduce job was 
relatively naive, and was never subjected to refactoring or tuning. We 
are certain the MapReduce job can be streamlined for a performance 
improvement, but we do not feel that optimization is a priority because 
we plan to switch from MapReduce to Google Dataflow.

Google Dataflow (which is derived from Google’s internal 
“FlumeJava”) is a much more manageable framework than 
MapReduce with comparable or superior performance [20]. It is the 
“big data” ETL framework of  choice internally at Google [21], and 
we expect performance gains when we complete this conversion [20]. 
Additionally, a Dataflow codebase will be much easier to manage than 
a MapReduce codebase, due to the far greater simplicity and flexibility 
of  the framework.

3.6 Bigtable Schema Design
Bigtable is a “NoSQL” database, and represents a very different way 
of  thinking about data and databases from traditional relational models 
and even other popular NoSQL databases like MongoDB and Redis. 
We made only minimal Bigtable-specific optimizations for our tests, 
and because of  this we missed out on some advantages of  Bigtable. 

Of  particular interest to us are the notions of  column families and 
column sparsity in Bigtable. Column families speed up data access 
while still allowing operations by row [4]. In addition, Bigtable’s 
unique handling of  columns allows for billions of  columns without 
performance degradation [4]. Both of  these features have factored  
into our designs for CAT, and have played a key role in our order 
linkage engine.

3.7 Querying Google Cloud Bigtable
Post-linkage, when the power of Bigtable is not as crucial, CAT data can 
quickly and easily be exported to BigQuery or an HDFS-based querying 
tool where common SQL commands can be used to query it (e.g. Hive)8.  
We are currently using Google’s BigQuery as an analytical store because 
of  its high-speed data access (terabytes in seconds) via common SQL-
like commands and its ability to be queried by existing sophisticated 
business intelligence (BI) tools such as Tableau and Qlikview. 
Experiments with Google’s BigQuery Connector for Hadoop [22] 
have been very successful, with speeds comparable to the insertion 
into Bigtable, thus allowing for balanced performance. However, as 
HBase [23] and associated tooling such as Apache Phoenix [24] mature, 
this may negate the need to use a separate analytical store with access 
becoming more user friendly than just via the HBase API.

3.8 Limitations of  Our Experiments
There are a number of  limitations we have identified, both in the general 
design of  the experiments and the application of  the experiments and 
results to evaluate the suitability of  Bigtable for CAT. These limitations, 
as well as some comments and future work to address the limitations, 
are listed in Table 4.

3.9 Limitations of  Google Cloud Bigtable
During our experiments we came across a few limitations of  the 
current version of  Cloud Bigtable that might require accommodations 
in selected use cases. These are listed in Table 5.

8  Note that many HDFS-compatible data processing and querying tools will work on data stored in Google Cloud Storage.
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3.10 Next Steps
We expect to achieve in excess of 25 billion FIX messages processed 
per hour, in order to ensure Bigtable can handle the “worst-case” CAT 
scenario. Additionally, we have an event linkage engine in development that 
handles reconstruction of  full order lifecycles. We are working on scaling 
the linkage engine through both volume and increased complexity of the 
order scenarios. Finally, we are developing specific analytical stores and tools 
to allow regulators to quickly learn what they need from the collected CAT 
data. These analytical stores and tools will be fed from Bigtable, but will not 
require technical skills beyond SQL commands and API calls and will allow 
for rapid access to all six years of  market event data stored by CAT.

4 Conclusions
We have described CAT, the challenge of  order lifecycle linkage, and 
shared results from a series of  experiments assessing Cloud Bigtable’s 
abilities to fulfill the needs of  CAT. Although experimentation is ongoing, 
thus far Cloud Bigtable has met or exceeded all our expectations. We 
have achieved throughput as high as 2.7 GB per second, which let us 
process about 2.7 million FIX messages per second in a partially-linked, 
CAT-compliant way. Based on our initial results, our next goal is to 
exceed a rate of  25 billion validated and linked CAT events per hour, 
which would fully satisfy initial CAT requirements.

We were able to conduct these experiments with both a relatively small 
team and budget, which gives us another data point in understanding how 
usage of  Google Cloud Platform in general, and Bigtable in particular, 
will help keep the costs of  building and running CAT as low as possible.

While Cloud Bigtable is a recently developed public version of  Google’s 
internal system and very unlike other databases (with the exception of  
HBase), we found it was an easy transition and have come to realize that 
Bigtable’s unique way of  storing data opens more doors than it closes. 
We are conducting further research at this time, and look forward to 
sharing more information with CAT stakeholders about how we are 
using Bigtable’s characteristics to elegantly handle the whole of  order 
linkage and other CAT requirements. We believe that Google Cloud 
Bigtable is clearly suitable for CAT and the order linkage problem. It 
scales well, can handle the complex nature of  the data, and interfaces 
well with other tools necessary to meet all CAT requirements. We are 
also analyzing other financial services use cases for the architecture, and 
encourage curious readers to contact the authors of  the paper. Any use 
case involving large volumes of  data that need to be accessed quickly is 
a good use case for Bigtable, particularly with varied data that does not 
fit cleanly into a relational-style schema.

Table 4: Some limitations of our experiments, with comments about the limitations 
and descriptions of future work to address the limitations.

Limitation Comments and Future Work

Not enough trials given the 
variation of  time endemic to large, 
complex MapReduce jobs

Further tests have been run and 
continue to be run, and results 
appear similar. Most data points 
in this whitepaper are already the 
average of  multiple identical runs.

Formalized testing of  reads not 
completed

This is the next phase of  our 
testing, and is already underway.

No access to real CAT data, cannot 
possibly account for all possible 
order scenarios

Real CAT data does not exist yet. 
We have used a combination of  real 
FIX messages and simulated data. 
Testing of  a larger variety and higher 
complexity of  orders is underway.

No evaluation of  durability

Both workers and tablet servers died 
during some of  our tests, but did 
not stop MapReduce jobs and would 
not have been noticed except for the 
logging messages generated. Formal 
durability evaluation is planned, possibly 
with a Chaos Monkey-like tool [25].

Relative performance of  virtual 
machine configurations only 
measured on small clusters

Testing of  virtual machine 
configurations at higher scales 
has already commenced.

Failure to account for rebalancing 
and scaling of  Bigtable cluster

While this may have affected 
some of  our experiments, a better 
understanding of  the Bigtable 
cluster could only raise our 
performance metrics. Making 
rebalancing and scaling of  the 
Bigtable cluster more transparent 
and manageable would be helpful 
in increasing our understanding in 
future experiments.

Table 5: Some limitations of the current version of Cloud Bigtable, with comments 
about the limitations and possible accommodations to address the limitations.

Limitation Comments and Accommodations

Cannot directly manage 
Bigtable cluster

During our experiments, Bigtable 
managed itself  quite well. We have 
the option to manually change the 
cluster size, and intelligent use of  
Bigtable aids the Bigtable service’s 
smart management.

Must use HBase API to access 
Bigtable

Easy, fast transfer of  data to 
BigQuery with BigQuery connector 
for SQL-like querying.No SQL query support for Bigtable
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More Information
FIS (formerly SunGard) Tests CAT Prototype Using Google Cloud Bigtable, with 
Quarter Hour Ingestion Rates Equivalent to 10 Billion Financial Trade 
Records per Hour: http://bit.ly/1JOn4do
SunGard Homepage: http://www.sungard.com
Announcing Google Cloud Bigtable: Google’s world-famous database is now 
available for everyone: http://goo.gl/lVWXuy
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