Patrones de mapas de calor

En esta página, se muestran ejemplos de los patrones que podrías ver en el mapa de calor de un análisis de Key Visualizer y, luego, se explica el significado de cada uno. Usa esta información para diagnosticar problemas de rendimiento con Cloud Bigtable.

Antes de leer esta página, debes familiarizarte con la descripción general de Key Visualizer.

Descripción de los patrones comunes

En esta página, se explica cómo interpretar los siguientes patrones de Key Visualizer.

Lecturas y escrituras distribuidas de manera uniforme

Mapa de calor en el que se muestran lecturas y escrituras distribuidas de manera uniforme

Si en un mapa de calor se muestra una mezcla detallada de colores oscuros y brillantes, significa que las lecturas y escrituras están distribuidas de manera uniforme en la tabla. Este mapa de calor representa un patrón de uso efectivo de Cloud Bigtable, de manera que no es necesario modificar nada.

Uso periódico

Mapa de calor en el que se muestra un patrón de uso periódico

Si en un mapa de calor aparecen bandas alternadas de colores claros y oscuros en un rango de claves, significa que accedes a ese rango solo durante algunos períodos. Por ejemplo, es posible que ejecutes un trabajo por lotes que acceda al rango de claves en horas específicas del día.

Este patrón de uso no representa ningún problema mientras no provoque un aumento excesivo del uso de CPU o la latencia, y siempre y cuando desees acceder a los datos de esta forma. Si este patrón provoca un uso excesivo de CPU, es posible que debas agregar más nodos a tu clúster durante los períodos de aumento repentino. Si acceder a los datos de esta manera no era tu intención, analiza tus aplicaciones a fin de descubrir cuáles son las que no se están comportando adecuadamente.

Rangos de claves activos

Mapa de calor en el que se muestran rangos de claves activos

Si un mapa de calor contiene bandas horizontales de un color brillante, separadas por colores oscuros, significa que los rangos de claves de colores brillantes tienen uno de los siguientes problemas:

  • Si estás viendo las métricas del Índice de presión de lectura o del Índice de presión de escritura, es posible que el rango de claves activo provoque un alto uso de CPU o una latencia alta. Estos problemas pueden producirse si ejecutas una gran cantidad de lecturas o escrituras, o si almacenas más de 256 MB en una fila. Presta especial atención si una sola fila activa esta advertencia, en lugar de un rango de ellas.
  • Si puedes ver la métrica Filas grandes, el rango de claves incluye filas que contienen más de 256 MB de datos o un promedio de más de 200 MB por fila.
  • Si ves otra métrica, es posible que estés accediendo a las filas de ese rango de claves mucho más que al resto.

Realiza, al menos, una de las siguientes acciones para abordar el problema:

  • Usa filtros para reducir la cantidad de datos que lees.
  • Cambia el diseño de tu esquema o tu aplicación a fin de que los datos de una fila activa, o de una fila demasiado grande, se dividan en varias de estas.
  • Actualiza tu aplicación para que almacene en la memoria caché los resultados de las lecturas de Cloud Bigtable.
  • Actualiza tu aplicación para que duplique las escrituras en Cloud Bigtable y las organice en lotes.

Aumentos repentinos

Mapa de calor en el que se muestra un aumento repentino

Si en un mapa de calor se muestra un rango de claves que cambia de forma repentina de un color oscuro a uno brillante, se produjo uno de los siguientes cambios:

  • Si ves la métrica Filas grandes, significa que agregaste una gran cantidad de datos a las filas de ese rango de claves en un período breve.

    Borra los datos de las filas grandes o cambia el diseño del esquema para almacenar menos datos en esas filas.

  • Si ves otra métrica, es posible que, en algún momento, hayas comenzado a acceder a esas filas con mucha más frecuencia que antes.

    Este patrón de uso no representa ningún problema mientras no provoque un aumento excesivo del uso de CPU o la latencia, y siempre y cuando desees acceder a los datos de esta forma. Si este patrón provoca un uso excesivo de CPU, es posible que debas agregar más nodos a tu clúster durante los períodos de aumento repentino. Si comenzar a acceder a los datos de esta manera no era tu intención, analiza tus aplicaciones a fin de descubrir cuáles son las que no se están comportando adecuadamente.

Lecturas y escrituras secuenciales

Mapa de calor en el que se muestran lecturas y escrituras secuenciales en un rango de claves

Si en un mapa de calor se muestra una línea diagonal brillante, esto significa que accedes a rangos de claves contiguos en una tabla en orden secuencial. Por ejemplo, es posible que hayas ejecutado un trabajo por lotes que itera en las claves de filas de la tabla.

Este patrón de uso no representa ningún problema mientras no provoque un aumento excesivo del uso de CPU o la latencia, y siempre y cuando desees acceder a los datos de esta forma. Si este patrón provoca un uso excesivo de CPU, es posible que debas agregar más nodos a tu clúster durante los períodos de aumento repentino. Si acceder a las filas de tu tabla en orden secuencial no era tu intención, analiza tus aplicaciones a fin de descubrir cuáles son las que no se están comportando adecuadamente.

Próximos pasos