使用永久表查询 Cloud Storage

通过创建永久表查询 Cloud Storage 上的文件的数据。

包含此代码示例的文档页面

如需查看上下文中使用的代码示例,请参阅以下文档:

代码示例

Java

试用此示例之前,请按照《BigQuery 快速入门:使用客户端库》中的 Java 设置说明进行操作。 如需了解详情,请参阅 BigQuery Java API 参考文档

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.CsvOptions;
import com.google.cloud.bigquery.ExternalTableDefinition;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;
import com.google.cloud.bigquery.TableResult;

// Sample to queries an external data source using a permanent table
public class QueryExternalGcsPerm {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "gs://cloud-samples-data/bigquery/us-states/us-states.csv";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING));
    String query =
        String.format("SELECT * FROM %s.%s WHERE name LIKE 'W%%'", datasetName, tableName);
    queryExternalGcsPerm(datasetName, tableName, sourceUri, schema, query);
  }

  public static void queryExternalGcsPerm(
      String datasetName, String tableName, String sourceUri, Schema schema, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Skip header row in the file.
      CsvOptions csvOptions = CsvOptions.newBuilder().setSkipLeadingRows(1).build();

      TableId tableId = TableId.of(datasetName, tableName);
      // Create a permanent table linked to the GCS file
      ExternalTableDefinition externalTable =
          ExternalTableDefinition.newBuilder(sourceUri, csvOptions).setSchema(schema).build();
      bigquery.create(TableInfo.of(tableId, externalTable));

      // Example query to find states starting with 'W'
      TableResult results = bigquery.query(QueryJobConfiguration.of(query));

      results
          .iterateAll()
          .forEach(row -> row.forEach(val -> System.out.printf("%s,", val.toString())));

      System.out.println("Query on external permanent table performed successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Query not performed \n" + e.toString());
    }
  }
}

Node.js

在尝试此示例之前,请按照《BigQuery 快速入门:使用客户端库》中的 Node.js 设置说明进行操作。如需了解详情,请参阅 BigQuery Node.js API 参考文档

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryExternalGCSPerm() {
  // Queries an external data source using a permanent table

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Configure the external data source
  const dataConfig = {
    sourceFormat: 'CSV',
    sourceUris: ['gs://cloud-samples-data/bigquery/us-states/us-states.csv'],
    // Optionally skip header row
    csvOptions: {skipLeadingRows: 1},
  };

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    externalDataConfiguration: dataConfig,
  };

  // Create an external table linked to the GCS file
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created.`);

  // Example query to find states starting with 'W'
  const query = `SELECT post_abbr
  FROM \`${datasetId}.${tableId}\`
  WHERE name LIKE 'W%'`;

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(query);
  console.log(`Job ${job.id} started.`);

  // Wait for the query to finish
  const [rows] = await job.getQueryResults();

  // Print the results
  console.log('Rows:');
  console.log(rows);
}

Python

在尝试此示例之前,请按照《BigQuery 快速入门:使用客户端库》中的 Python 设置说明进行操作。如需了解详情,请参阅 BigQuery Python API 参考文档

# from google.cloud import bigquery
# client = bigquery.Client()
# dataset_id = 'my_dataset'

# Configure the external data source
dataset_ref = bigquery.DatasetReference(project, dataset_id)
table_id = "us_states"
schema = [
    bigquery.SchemaField("name", "STRING"),
    bigquery.SchemaField("post_abbr", "STRING"),
]
table = bigquery.Table(dataset_ref.table(table_id), schema=schema)
external_config = bigquery.ExternalConfig("CSV")
external_config.source_uris = [
    "gs://cloud-samples-data/bigquery/us-states/us-states.csv"
]
external_config.options.skip_leading_rows = 1  # optionally skip header row
table.external_data_configuration = external_config

# Create a permanent table linked to the GCS file
table = client.create_table(table)  # API request

# Example query to find states starting with 'W'
sql = 'SELECT * FROM `{}.{}` WHERE name LIKE "W%"'.format(dataset_id, table_id)

query_job = client.query(sql)  # API request

w_states = list(query_job)  # Waits for query to finish
print("There are {} states with names starting with W.".format(len(w_states)))