检索数据集的属性。
包含此代码示例的文档页面
如需查看上下文中使用的代码示例,请参阅以下文档:
代码示例
Go
在尝试此示例之前,请按照《BigQuery 快速入门:使用客户端库》中的 Go 设置说明进行操作。如需了解详情,请参阅 BigQuery Go API 参考文档。
import (
"context"
"fmt"
"io"
"cloud.google.com/go/bigquery"
"google.golang.org/api/iterator"
)
// printDatasetInfo demonstrates fetching dataset metadata and printing some of it to an io.Writer.
func printDatasetInfo(w io.Writer, projectID, datasetID string) error {
// projectID := "my-project-id"
// datasetID := "mydataset"
ctx := context.Background()
client, err := bigquery.NewClient(ctx, projectID)
if err != nil {
return fmt.Errorf("bigquery.NewClient: %v", err)
}
defer client.Close()
meta, err := client.Dataset(datasetID).Metadata(ctx)
if err != nil {
return err
}
fmt.Fprintf(w, "Dataset ID: %s\n", datasetID)
fmt.Fprintf(w, "Description: %s\n", meta.Description)
fmt.Fprintln(w, "Labels:")
for k, v := range meta.Labels {
fmt.Fprintf(w, "\t%s: %s", k, v)
}
fmt.Fprintln(w, "Tables:")
it := client.Dataset(datasetID).Tables(ctx)
cnt := 0
for {
t, err := it.Next()
if err == iterator.Done {
break
}
cnt++
fmt.Fprintf(w, "\t%s\n", t.TableID)
}
if cnt == 0 {
fmt.Fprintln(w, "\tThis dataset does not contain any tables.")
}
return nil
}
Java
试用此示例之前,请按照《BigQuery 快速入门:使用客户端库》中的 Java 设置说明进行操作。 如需了解详情,请参阅 BigQuery Java API 参考文档。
import com.google.api.gax.paging.Page;
import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQuery.TableListOption;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Dataset;
import com.google.cloud.bigquery.DatasetId;
import com.google.cloud.bigquery.Table;
public class GetDatasetInfo {
public static void main(String[] args) {
// TODO(developer): Replace these variables before running the sample.
String projectId = "MY_PROJECT_ID";
String datasetName = "MY_DATASET_NAME";
getDatasetInfo(projectId, datasetName);
}
public static void getDatasetInfo(String projectId, String datasetName) {
try {
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests.
BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();
DatasetId datasetId = DatasetId.of(projectId, datasetName);
Dataset dataset = bigquery.getDataset(datasetId);
// View dataset properties
String description = dataset.getDescription();
System.out.println(description);
// View tables in the dataset
// For more information on listing tables see:
// https://javadoc.io/static/com.google.cloud/google-cloud-bigquery/0.22.0-beta/com/google/cloud/bigquery/BigQuery.html
Page<Table> tables = bigquery.listTables(datasetName, TableListOption.pageSize(100));
tables.iterateAll().forEach(table -> System.out.print(table.getTableId().getTable() + "\n"));
System.out.println("Dataset info retrieved successfully.");
} catch (BigQueryException e) {
System.out.println("Dataset info not retrieved. \n" + e.toString());
}
}
}
Node.js
在尝试此示例之前,请按照《BigQuery 快速入门:使用客户端库》中的 Node.js 设置说明进行操作。如需了解详情,请参阅 BigQuery Node.js API 参考文档。
// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();
async function getDataset() {
// Retrieves dataset named "my_dataset".
/**
* TODO(developer): Uncomment the following lines before running the sample
*/
// const datasetId = "my_dataset";
// Retrieve dataset reference
const [dataset] = await bigquery.dataset(datasetId).get();
console.log('Dataset:');
console.log(dataset.metadata.datasetReference);
}
getDataset();
Python
在尝试此示例之前,请按照《BigQuery 快速入门:使用客户端库》中的 Python 设置说明进行操作。如需了解详情,请参阅 BigQuery Python API 参考文档。
from google.cloud import bigquery
# Construct a BigQuery client object.
client = bigquery.Client()
# TODO(developer): Set dataset_id to the ID of the dataset to fetch.
# dataset_id = 'your-project.your_dataset'
dataset = client.get_dataset(dataset_id) # Make an API request.
full_dataset_id = "{}.{}".format(dataset.project, dataset.dataset_id)
friendly_name = dataset.friendly_name
print(
"Got dataset '{}' with friendly_name '{}'.".format(
full_dataset_id, friendly_name
)
)
# View dataset properties.
print("Description: {}".format(dataset.description))
print("Labels:")
labels = dataset.labels
if labels:
for label, value in labels.items():
print("\t{}: {}".format(label, value))
else:
print("\tDataset has no labels defined.")
# View tables in dataset.
print("Tables:")
tables = list(client.list_tables(dataset)) # Make an API request(s).
if tables:
for table in tables:
print("\t{}".format(table.table_id))
else:
print("\tThis dataset does not contain any tables.")