クイックスタート

このクイックスタートでは、AutoML Tables ウェブ アプリケーションを使用して以下の手順を行うプロセスを順に紹介していきます。

  • データセットを作成します。
  • CSV ファイルからデータセットにテーブルデータをインポートします。
  • インポートしたデータのスキーマの列を確認します。
  • インポートしたデータからモデルをトレーニングします。
  • モデルを使用して予測を行います。

プロセスがすべて完了するまでに 2~3 時間かかります。その時間のほとんどは見た目に変化のない状態が続くため、ブラウザ ウィンドウを閉じ、後でタスクに戻ってもかまいません。

始める前に

プロジェクトの作成と AutoML Tables の有効化

  1. Google アカウントにログインします。

    Google アカウントをまだお持ちでない場合は、新しいアカウントを登録します。

  2. GCP Console のプロジェクト セレクタのページで、GCP プロジェクトを選択または作成します。

    プロジェクト セレクタのページに移動

  3. Google Cloud Platform プロジェクトに対して課金が有効になっていることを確認します。 プロジェクトに対して課金が有効になっていることを確認する方法を学習する

  4. Cloud AutoML と StorageAPIs を有効にします。

    API を有効にする

サンプルデータ

このクイックスタートでは、オープンソースの Bank marketing のデータセットを使用します。このデータセットは、クリエイティブ・コモンズ CCO: Public Domain のライセンスを通じて利用できます。列名はわかりやすいように改定しています。

データセットの作成とモデルのトレーニング

  1. Google Cloud Console の [AutoML テーブル] ページにアクセスして、データセットの作成とモデルのトレーニングのプロセスを開始します。

    [AutoML テーブル] ページに移動

  2. [データセット] を選択し、[新しいデータセット] を選択します。

    AutoML Tables のデータセットのページ

  3. データセット名に「Quickstart_Dataset」と入力し、[データセットを作成] をクリックします。

  4. [データのインポート] ページで、[Cloud Storage から CSV ファイルを選択] を選択します。

    [ロケーション] は [Global] に設定したままにします。

  5. バケットに「cloud-ml-tables-data/bank-marketing.csv」と入力します。

  6. [インポート] をクリックします。

    AutoML Tables のデータセットの作成ページ

    データセットのインポートが完了するまで数分かかります。

  7. データセットのインポートが完了したら、[ターゲット列] で [Deposit] を選択します。

    ターゲット列は、予測用にモデルをトレーニングする値を識別します。

    AutoML Tables のスキーマのページ

    このウィンドウには、インポートされたデータに関する情報が表示されます。各行をクリックすると、特定の特徴の分布と相関に関する詳細を表示できます。

    データセット行の詳細

  8. [モデル トレーニング] をクリックします。[モデル名] に「Quickstart_Model」と入力し、[トレーニングの予算] に「1」と入力します。

    AutoML Tables のトレーニング ページ

  9. [モデル トレーニング] をクリックしてトレーニング プロセスを開始します。

    モデルのトレーニングが完了するまで約 2 時間かかります。モデルのトレーニングが正常に完了すると、[モデル] タブにモデルの主な指標が表示されます。

    トレーニング済みモデルの主な指標

  10. モデルの評価指標の詳細ビューで、[評価] タブを選択します。

    このモデルでは、1 は悪い結果(この銀行に預金が行われないこと)を表し、2 は良い結果(この銀行に預金が行われること)を表します。

    ラベルを選択すると、そのラベルに対する具体的な評価指標を表示できます。[スコアのしきい値] を調整すると、しきい値を変えることで指標がどのように変化するかを確認できます。

    AutoML Tables の評価ページ

    下方にスクロールして、混同行列と特徴量の重要度のグラフを表示することもできます。

    混同行列と特徴量の重要度のグラフ

  11. [テストと使用] タブを選択し、[オンライン予測] を選択します。

  12. [モデルのデプロイ] をクリックしてモデルをデプロイします。

    オンライン予測をリクエストするには、まずモデルをデプロイする必要があります。モデルのデプロイが完了するまで数分かかります。

    AutoML Tables のデプロイボタン

    モデルがデプロイされると、AutoML Tables に、モデルのテストに利用できるサンプルデータが入力されます。

  13. [特徴量の重要度を生成] チェックボックスをオンにします。

  14. [予測] をクリックしてオンライン予測をリクエストします。

    特徴量の重要度がオンの状態の AutoML Tables の予測ボタン

    AutoML Tables では、入力値に基づいて各結果の確率が決定され、[予測結果] セクションに予測の信頼値が表示されます。

    特徴量の重要度が表示された予測結果

    上記の例では、モデルは 99.8% の確度で 1 の結果を予測しています。

    予測リクエストをバッチ形式で送信することもできます。詳細

クリーンアップ

不要になったカスタムモデルやデータセットは削除できます。

不要な Google Cloud Platform 料金が発生しないようにするには、Cloud Console を使用して、不要になったプロジェクトを削除します。

モデルのデプロイ解除

モデルがデプロイされている間は料金がかかります。

  1. [モデル] を選択し、デプロイ解除するモデルをクリックします。
  2. [テストと使用] タブを選択し、[オンライン予測] をクリックします。
  3. [デプロイメントを削除] をクリックします。

モデルのデプロイ解除

モデルの削除

モデルを削除するには、[モデル] を選択します。削除するモデルの [その他の操作] メニューをクリックし、[モデルを削除] を選択します。

モデルを削除

データセットの削除

データセットを削除するには、[データセット] を選択します。削除するモデルの [その他の操作] メニューをクリックし、[データセットの削除] を選択します。

データセットの削除

次のステップ