Gerenciar modelos

Nesta página, você verá como implantar, remover a implantação, listar, excluir e receber informações sobre seus modelos personalizados usando o AutoML Tables.

Para ver informações sobre como treinar um novo modelo, consulte Como treinar modelos.

Como implantar um modelo

Após treinar o modelo, implante-o antes de usa-lo para solicitar predições online. É possível solicitar previsões em lote de um modelo não implantado.

A implantação do modelo gera cobranças. Para mais informações, consulte a página de preços.

Console

  1. Acesse a página do AutoML Tables no Console do Google Cloud.

    Acessar a página do AutoML Tables

  2. Selecione a guia Modelos, no painel de navegação à esquerda e selecione a Região.

  3. No menu Mais ações, do modelo que você quer implantar, clique em Implantar modelo.

    Menu “Mais ações” para implantação

REST e LINHA DE CMD

Use o método models.deploy para implantar um modelo.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • endpoint: automl.googleapis.com para o local global e eu-automl.googleapis.com para a região da UE.
  • project-id: é o ID do projeto do Google Cloud.
  • location: o local do recurso: us-central1 para global ou eu para a União Europeia.
  • model-id: o código do modelo que você quer implantar. Por exemplo, TBL543.

Método HTTP e URL:

POST https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id:deploy

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id:deploy

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id:deploy" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/292381/locations/us-central1/operations/TBL543",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.OperationMetadata",
    "createTime": "2019-12-26T19:21:00.550021Z",
    "updateTime": "2019-12-26T19:21:00.550021Z",
    "worksOn": [
      "projects/292381/locations/us-central1/models/TBL543"
    ],
    "deployModelDetails": {},
    "state": "RUNNING"
  }
}

A implantação de um modelo é uma operação de longa duração. É possível pesquisar o status de uma operação ou esperar que ela seja retornada. Saiba mais.

Java

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

Ver no GitHub (em inglês) Feedback
import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.DeployModelRequest;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeployModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deployModel(projectId, modelId);
  }

  // Deploy a model for prediction
  static void deployModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      DeployModelRequest request =
          DeployModelRequest.newBuilder().setName(modelFullId.toString()).build();
      OperationFuture<Empty, OperationMetadata> future = client.deployModelAsync(request);

      future.get();
      System.out.println("Model deployment finished");
    }
  }
}

Node.js

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais.

Ver no GitHub (em inglês) Feedback
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.AutoMlClient();

/**
 * Demonstrates using the AutoML client to deploy model.
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "TBL4704590352927948800";

// Get the full path of the model.
const modelFullId = client.modelPath(projectId, computeRegion, modelId);

// Deploy a model with the deploy model request.
client
  .deployModel({name: modelFullId})
  .then(responses => {
    const response = responses[0];
    console.log('Deployment Details:');
    console.log(`\tName: ${response.name}`);
    console.log('\tMetadata:');
    console.log(`\t\tType Url: ${response.metadata.typeUrl}`);
    console.log(`\tDone: ${response.done}`);
  })
  .catch(err => {
    console.error(err);
  });

Python

A biblioteca de cliente para AutoML Tables inclui outros métodos Python que simplificam o uso da API AutoML Tables. Esses métodos se referem aos conjuntos de dados e aos modelos pelos nomes e não pelos IDs. É preciso que os nomes dos conjuntos de dados e modelos sejam exclusivos. Para mais informações, consulte a Referência do cliente.

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'

from google.cloud import automl_v1beta1 as automl

client = automl.TablesClient(project=project_id, region=compute_region)

# Deploy model
response = client.deploy_model(model_display_name=model_display_name)

# synchronous check of operation status.
print("Model deployed. {}".format(response.result()))

Como remover a implantação de um modelo

Para solicitar previsões on-line, primeiro você precisa implantar seu modelo. Para evitar cobranças desnecessárias, é possível remover a implantação do modelo quando você não precisar mais dele para fazer previsões on-line.

Para informações sobre cobranças de implantação, consulte a página de preços.

Console

  1. Acesse a página do AutoML Tables no Console do Google Cloud.

    Acessar a página do AutoML Tables

  2. Selecione a guia Modelos, no painel de navegação à esquerda e selecione a Região.

  3. No menu Mais ações, do modelo que você pretende remover, clique em Remover implantação.

    Menu “Mais ações” com “Remover implantação”

REST e LINHA DE CMD

Para remover a implantação de um modelo, use o método models.undeploy.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • endpoint: automl.googleapis.com para o local global e eu-automl.googleapis.com para a região da UE.
  • project-id: é o ID do projeto do Google Cloud.
  • location: o local do recurso: us-central1 para global ou eu para a União Europeia.
  • model-id: o código do modelo que você quer remover. Por exemplo, TBL543.

Método HTTP e URL:

POST https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id:undeploy

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id:undeploy

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id:undeploy" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/292381/locations/us-central1/operations/TBL543",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.OperationMetadata",
    "createTime": "2019-12-26T19:19:21.579163Z",
    "updateTime": "2019-12-26T19:19:21.579163Z",
    "worksOn": [
      "projects/292381/locations/us-central1/models/TBL543"
    ],
    "undeployModelDetails": {},
    "state": "RUNNING"
  }
}

Java

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

Ver no GitHub (em inglês) Feedback
import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.cloud.automl.v1beta1.UndeployModelRequest;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class UndeployModel {

  static void undeployModel() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    undeployModel(projectId, modelId);
  }

  // Undeploy a model from prediction
  static void undeployModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      UndeployModelRequest request =
          UndeployModelRequest.newBuilder().setName(modelFullId.toString()).build();
      OperationFuture<Empty, OperationMetadata> future = client.undeployModelAsync(request);

      future.get();
      System.out.println("Model undeployment finished");
    }
  }
}

Node.js

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais.

Ver no GitHub (em inglês) Feedback
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.AutoMlClient();

/**
 * Demonstrates using the AutoML client to undelpoy model.
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "TBL4704590352927948800";

// Get the full path of the model.
const modelFullId = client.modelPath(projectId, computeRegion, modelId);

// Undeploy a model with the undeploy model request.
client
  .undeployModel({name: modelFullId})
  .then(responses => {
    const response = responses[0];
    console.log('Undeployment Details:');
    console.log(`\tName: ${response.name}`);
    console.log('\tMetadata:');
    console.log(`\t\tType Url: ${response.metadata.typeUrl}`);
    console.log(`\tDone: ${response.done}`);
  })
  .catch(err => {
    console.error(err);
  });

Python

A biblioteca de cliente para AutoML Tables inclui outros métodos Python que simplificam o uso da API AutoML Tables. Esses métodos se referem aos conjuntos de dados e aos modelos pelos nomes e não pelos IDs. É preciso que os nomes dos conjuntos de dados e modelos sejam exclusivos. Para mais informações, consulte a Referência do cliente.

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'

from google.cloud import automl_v1beta1 as automl

client = automl.TablesClient(project=project_id, region=compute_region)

# Undeploy model
response = client.undeploy_model(model_display_name=model_display_name)

# synchronous check of operation status.
print("Model undeployed. {}".format(response.result()))

Como conseguir informações sobre um modelo

Quando o treinamento estiver concluído, será possível conseguir informações sobre o modelo recém-criado.

Console

  1. Acesse a página do AutoML Tables no Console do Google Cloud.

    Acessar a página do AutoML Tables

  2. Selecione a guia Modelos no painel de navegação à esquerda e depois selecione um modelo para ver as informações dele.

  3. Selecione a guia Treinar.

    É possível ver métricas de alto nível do modelo, como precisão e recall.

    Métricas de alto nível de um modelo treinado

    Se você precisar de ajuda para avaliar a qualidade do modelo, consulte Como avaliar modelos.

REST e LINHA DE CMD

Use o método models.get para receber informações sobre um modelo.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • endpoint: automl.googleapis.com para o local global e eu-automl.googleapis.com para a região da UE.
  • project-id: é o ID do projeto do Google Cloud.
  • location: o local do recurso: us-central1 para global ou eu para a União Europeia.
  • model-id: o código do modelo sobre o qual você quer receber informações. Por exemplo, TBL543.

Método HTTP e URL:

GET https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

Java

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

Ver no GitHub (em inglês) Feedback
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.Model;
import com.google.cloud.automl.v1beta1.ModelName;
import io.grpc.StatusRuntimeException;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException, StatusRuntimeException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId)
      throws IOException, StatusRuntimeException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s%n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s%n", retrievedModelId);
      System.out.format("Model display name: %s%n", model.getDisplayName());
      System.out.println("Model create time:");
      System.out.format("\tseconds: %s%n", model.getCreateTime().getSeconds());
      System.out.format("\tnanos: %s%n", model.getCreateTime().getNanos());
      System.out.format("Model deployment state: %s%n", model.getDeploymentState());
    }
  }
}

Node.js

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais.

Ver no GitHub (em inglês) Feedback
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.AutoMlClient();

/**
 * Demonstrates using the AutoML client to get model details.
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "TBL4704590352927948800";

// Get the full path of the model.
const modelFullId = client.modelPath(projectId, computeRegion, modelId);

// Get complete detail of the model.
client
  .getModel({name: modelFullId})
  .then(responses => {
    const model = responses[0];

    // Display the model information.
    console.log(`Model name: ${model.name}`);
    console.log(`Model Id: ${model.name.split('/').pop(-1)}`);
    console.log(`Model display name: ${model.displayName}`);
    console.log(`Dataset Id: ${model.datasetId}`);
    console.log('Tables model metadata: ');
    console.log(
      `\tTraining budget: ${model.tablesModelMetadata.trainBudgetMilliNodeHours}`
    );
    console.log(
      `\tTraining cost: ${model.tablesModelMetadata.trainCostMilliNodeHours}`
    );
    console.log(`Model deployment state: ${model.deploymentState}`);
  })
  .catch(err => {
    console.error(err);
  });

Python

A biblioteca de cliente para AutoML Tables inclui outros métodos Python que simplificam o uso da API AutoML Tables. Esses métodos se referem aos conjuntos de dados e aos modelos pelos nomes e não pelos IDs. É preciso que os nomes dos conjuntos de dados e modelos sejam exclusivos. Para mais informações, consulte a Referência do cliente.

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'

from google.cloud import automl_v1beta1 as automl
from google.cloud.automl_v1beta1 import enums

client = automl.TablesClient(project=project_id, region=compute_region)

# Get complete detail of the model.
model = client.get_model(model_display_name=model_display_name)

# Retrieve deployment state.
if model.deployment_state == enums.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# get features of top importance
feat_list = [
    (column.feature_importance, column.column_display_name)
    for column in model.tables_model_metadata.tables_model_column_info
]
feat_list.sort(reverse=True)
if len(feat_list) < 10:
    feat_to_show = len(feat_list)
else:
    feat_to_show = 10

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Features of top importance:")
for feat in feat_list[:feat_to_show]:
    print(feat)
print("Model create time:")
print("\tseconds: {}".format(model.create_time.seconds))
print("\tnanos: {}".format(model.create_time.nanos))
print("Model deployment state: {}".format(deployment_state))

Listar modelos

Um projeto pode incluir vários modelos treinados usando conjuntos de dados iguais ou diferentes.

Console

Para ver uma lista dos modelos disponíveis usando o Console do Google Cloud, clique na guia Modelos, na barra de navegação à esquerda e selecione a Região.

REST e LINHA DE CMD

Para ver uma lista dos modelos disponíveis para uso com a API, use o método models.list.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • endpoint: automl.googleapis.com para o local global e eu-automl.googleapis.com para a região da UE.
  • project-id: é o ID do projeto do Google Cloud.
  • location: o local do recurso: us-central1 para global ou eu para a União Europeia.

Método HTTP e URL:

GET https://endpoint/v1beta1/projects/project-id/locations/location/models

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://endpoint/v1beta1/projects/project-id/locations/location/models

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://endpoint/v1beta1/projects/project-id/locations/location/models" | Select-Object -Expand Content
Este método retorna um objeto de modelo completo para cada modelo, no local e no projeto selecionados.

Java

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

Ver no GitHub (em inglês) Feedback
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.ListModelsRequest;
import com.google.cloud.automl.v1beta1.LocationName;
import com.google.cloud.automl.v1beta1.Model;
import java.io.IOException;

class ListModels {

  static void listModels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listModels(projectId);
  }

  // List the models available in the specified location
  static void listModels(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Create list models request.
      ListModelsRequest listModlesRequest =
          ListModelsRequest.newBuilder()
              .setParent(projectLocation.toString())
              .setFilter("")
              .build();

      // List all the models available in the region by applying filter.
      System.out.println("List of models:");
      for (Model model : client.listModels(listModlesRequest).iterateAll()) {
        // Display the model information.
        System.out.format("Model name: %s%n", model.getName());
        // To get the model id, you have to parse it out of the `name` field. As models Ids are
        // required for other methods.
        // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
        String[] names = model.getName().split("/");
        String retrievedModelId = names[names.length - 1];
        System.out.format("Model id: %s%n", retrievedModelId);
        System.out.format("Model display name: %s%n", model.getDisplayName());
        System.out.println("Model create time:");
        System.out.format("\tseconds: %s%n", model.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s%n", model.getCreateTime().getNanos());
        System.out.format("Model deployment state: %s%n", model.getDeploymentState());
      }
    }
  }
}

Node.js

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais.

Ver no GitHub (em inglês) Feedback
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.AutoMlClient();

/**
 * Demonstrates using the AutoML client to list all models.
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const filter_ = '[FILTER_EXPRESSIONS]' e.g., "tablesModelMetadata:*";

// A resource that represents Google Cloud Platform location.
const projectLocation = client.locationPath(projectId, computeRegion);

// List all the models available in the region by applying filter.
client
  .listModels({parent: projectLocation, filter: filter})
  .then(responses => {
    const model = responses[0];

    // Display the model information.
    console.log('List of models:');
    for (let i = 0; i < model.length; i++) {
      console.log(`\nModel name: ${model[i].name}`);
      console.log(`Model Id: ${model[i].name.split('/').pop(-1)}`);
      console.log(`Model display name: ${model[i].displayName}`);
      console.log(`Dataset Id: ${model[i].datasetId}`);
      console.log('Tables model metadata:');
      console.log(
        `\tTraining budget: ${model[i].tablesModelMetadata.trainBudgetMilliNodeHours}`
      );
      console.log(
        `\tTraining cost: ${model[i].tablesModelMetadata.trainCostMilliNodeHours}`
      );
      console.log(`Model deployment state: ${model[i].deploymentState}`);
    }
  })
  .catch(err => {
    console.error(err);
  });

Python

A biblioteca de cliente para AutoML Tables inclui outros métodos Python que simplificam o uso da API AutoML Tables. Esses métodos se referem aos conjuntos de dados e aos modelos pelos nomes e não pelos IDs. É preciso que os nomes dos conjuntos de dados e modelos sejam exclusivos. Para mais informações, consulte a Referência do cliente.

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# filter_ = 'DATASET_DISPLAY_NAME_HERE'

from google.cloud import automl_v1beta1 as automl
from google.cloud.automl_v1beta1 import enums

client = automl.TablesClient(project=project_id, region=compute_region)

# List all the models available in the region by applying filter.
response = client.list_models(filter_=filter_)

print("List of models:")
for model in response:
    # Retrieve deployment state.
    if model.deployment_state == enums.Model.DeploymentState.DEPLOYED:
        deployment_state = "deployed"
    else:
        deployment_state = "undeployed"

    # Display the model information.
    print("Model name: {}".format(model.name))
    print("Model id: {}".format(model.name.split("/")[-1]))
    print("Model display name: {}".format(model.display_name))
    metadata = model.tables_model_metadata
    print(
        "Target column display name: {}".format(
            metadata.target_column_spec.display_name
        )
    )
    print(
        "Training budget in node milli hours: {}".format(
            metadata.train_budget_milli_node_hours
        )
    )
    print(
        "Training cost in node milli hours: {}".format(
            metadata.train_cost_milli_node_hours
        )
    )
    print("Model create time:")
    print("\tseconds: {}".format(model.create_time.seconds))
    print("\tnanos: {}".format(model.create_time.nanos))
    print("Model deployment state: {}".format(deployment_state))
    print("\n")

exclusão de um modelo

A exclusão de um modelo o remove permanentemente do projeto.

Console

  1. Na IU das do AutoML Tables, clique na guia Modelos, no menu de navegação à esquerda e selecione aRegião para exibir a lista de modelos disponíveis para essa região.

  2. Clique no menu de três pontos, à extrema direita da linha que você quer excluir e selecione Excluir modelo.

  3. Clique em Excluir na caixa de diálogo de confirmação.

REST e LINHA DE CMD

Para excluir um modelo, use o método models.delete.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • endpoint: automl.googleapis.com para o local global e eu-automl.googleapis.com para a região da UE.
  • project-id: é o ID do projeto do Google Cloud.
  • location: o local do recurso: us-central1 para global ou eu para a União Europeia.
  • model-id: o código do modelo que você quer excluir. Por exemplo, TBL543.

Método HTTP e URL:

DELETE https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X DELETE \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://endpoint/v1beta1/projects/project-id/locations/location/models/model-id" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/29452381/locations/us-central1/operations/TBL543",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.OperationMetadata",
    "createTime": "2019-12-26T17:19:50.684850Z",
    "updateTime": "2019-12-26T17:19:50.684850Z",
    "deleteDetails": {},
    "worksOn": [
      "projects/29452381/locations/us-central1/models/TBL543"
    ],
    "state": "DONE"
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

A exclusão de um modelo é uma operação de longa duração. É possível pesquisar o status de uma operação ou esperar que ela seja retornada. Saiba mais.

Java

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

Ver no GitHub (em inglês) Feedback
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais.

Ver no GitHub (em inglês) Feedback
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.AutoMlClient();

/**
 * Demonstrates using the AutoML client to delete a model.
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "TBL4704590352927948800";

// Get the full path of the model.
const modelFullId = client.modelPath(projectId, computeRegion, modelId);

// Delete a model.
client
  .deleteModel({name: modelFullId})
  .then(responses => {
    const operation = responses[0];
    return operation.promise();
  })
  .then(responses => {
    // The final result of the operation.
    const operationDetails = responses[2];

    // Get the Model delete details.
    console.log('Model delete details:');
    console.log('\tOperation details:');
    console.log(`\t\tName: ${operationDetails.name}`);
    console.log(`\tDone: ${operationDetails.done}`);
  })
  .catch(err => {
    console.error(err);
  });

Python

A biblioteca de cliente para AutoML Tables inclui outros métodos Python que simplificam o uso da API AutoML Tables. Esses métodos se referem aos conjuntos de dados e aos modelos pelos nomes e não pelos IDs. É preciso que os nomes dos conjuntos de dados e modelos sejam exclusivos. Para mais informações, consulte a Referência do cliente.

Se os recursos estiverem localizados na região da UE, você precisará definir o endpoint explicitamente. Saiba mais

# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'

from google.cloud import automl_v1beta1 as automl

client = automl.TablesClient(project=project_id, region=compute_region)

# Undeploy model
response = client.delete_model(model_display_name=model_display_name)

# synchronous check of operation status.
print("Model deleted. {}".format(response.result()))

A seguir