
AlloyDB Omni Developers Guide

Table of contents

Table of contents 1
Build with the PostgreSQL community 3

pgAdmin 3
pgBackRest 3
Barman 4
Patroni 4
pg_auto_failover 4

Develop with AlloyDB Omni 4
Enable and monitor the columnar engine 4

Query types that benefit from the columnar engine 5
Use the columnar engine 5
What data you can add to the column store 6

Supported data types 6
Unsupported data sources 7

Columnar engine limitations 7
Configure the columnar engine 7

Enable the columnar engine 7
Configure the size of the column store 8
Enable vectorized join 8
Manually refresh your columnar engine 9
Disable the columnar engine 9

Troubleshoot the columnar engine 9
Fix an insufficient shared memory error 9

Linux 9
macOS 10
Fix columns not getting populated 10

Monitor the columnar engine 10
Verify usage of the columnar engine using EXPLAIN 10

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

View information about tables with columns in the column store 12
View information about the columns in the column store 13
View columnar engine execution statistics for recent queries 13
View column store memory usage 15

Store, index, and query vector embeddings with pgvector 15
Query and index embeddings using pgvector 15

Create an optimized nearest-neighbor index 15
Make a nearest-neighbor query with given text 16
Preview the ScaNN algorithm 18
Tune a scann index 19
Use model version tags to avoid errors 20

Query your database using natural language 21
The power and risks of natural-language queries 21
Sanitize queries with parameterized secure views 22
Before you begin 23

Set up your database for parameterized secure views 23
Parameterized secure views 24

Create a parameterized secure view 25
Query a parameterized secure view 25

Execute a natural-language query 27
Convert natural language to SQL 28
Run the converted SQL using parameters 28
An example of executing a natural-language query 29

Database design for natural-language handling 30
Design your schema for human comprehension 31
Use descriptive names 31
Use specific data types 31

Roll back with caution after enabling the Preview 31
Register and call remote AI models in AlloyDB Omni 32

Overview 32
How it works 32
Key concepts 33
Model provider 33

Model type 34
Authentication 34
Prediction functions 35
Transform functions 35
HTTP header generation function 36

Register a model with model endpoint management 37
Enable the extension 37
Set up authentication 38

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Set up authentication for Vertex AI 38
Set up authentication for other model providers 38

Text embedding models with built-in support 39
Vertex AI embedding models 39
Open AI text embedding model 40

Other text embedding models 41
Custom-hosted text embedding model 41
OpenAI Text Embedding 3 Small and Large models 44

Generic models 47
Generic model on Hugging Face 47
Gemini model 48

Generate vector embeddings with model endpoint management 49
Before you begin 49
Generate embeddings 49
Examples 50

Text embedding models with in-built support 50
Other text embedding models 50

Invoke predictions with model endpoint management 51
Before you begin 51
Invoke predictions for generic models 51
Examples 51

Build with the PostgreSQL community
Because AlloyDB Omni is compatible with PostgreSQL, you can use it with a wide range of
open-source PostgreSQL tools. This section covers some of the open-source PostgreSQL tools
that work with AlloyDB Omni.

pgAdmin
pgAdmin is an open-source administration and development platform for PostgreSQL. It
provides a graphical user interface (GUI) to manage PostgreSQL databases and their objects.

pgBackRest
pgBackRest is an open-source database backup server that you can use to back up and restore
your AlloyDB Omni database clusters. For more information about backup and restore with
pgBackRest, see "Configure pgBackRest" in the AlloyDB Omni Configuration Guide.

Did you find this document helpful? Please send us your feedback.

https://www.pgadmin.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Barman
Barman is another open-source administration tool designed for disaster recovery and
management of PostgreSQL servers. For more information, see Set up Barman for AlloyDB
Omni.

Patroni
Patroni is an open-source tool that manages and automates high availability (HA) for
PostgreSQL clusters. For more information, see "High Availability and DR" in the AlloyDB Omni
Configuration Guide.

pg_auto_failover
pg_auto_failover is an open-source PostgreSQL extension that simplifies the process of setting
up and managing a highly available AlloyDB Omni environment.

Develop with AlloyDB Omni
This section covers various AlloyDB features and how to use them.

Enable and monitor the columnar engine

The AlloyDB columnar engine accelerates SQL query processing of scans, joins, and
aggregates by providing these components:

● A column store that contains table and materialized-view data for selected columns,
reorganized into a column-oriented format.

● A columnar query planner and execution engine to support use of the column store in
queries.

The columnar engine can be used on the primary instance, a read replica instance, or both. You
can also use auto-columnarization to analyze your workload and automatically populate the
column store with the columns that provide the best performance gain.

To use the columnar engine with a specific query, all columns in the query fragments, such as
joins and scans, must be in the column store.

By default, the columnar engine is set to use 30% of your instance's memory. Depending on
your workload, memory usage, and whether you have a read replica configured, you can reduce
the columnar engine memory allocation on your primary instance and allocate more memory to
the read replica instance.

Did you find this document helpful? Please send us your feedback.

https://pgbarman.org/
https://cloud.google.com/alloydb/docs/omni/install-configure-barman
https://cloud.google.com/alloydb/docs/omni/install-configure-barman
https://patroni.readthedocs.io/en/latest/
https://pg-auto-failover.readthedocs.io/en/main/
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

To view and monitor memory usage by the columnar engine, see "View column store memory
usage" in this guide. To modify the memory size used by the column store, see "Configure the
size of the column store" in this guide. To find the recommended columnar engine memory size
for your instance, see Recommend column store memory size.

Query types that benefit from the columnar engine

The following is a list of operations and their query patterns that benefit most from the columnar
engine:

● Table scans
● It has selective filters, such as WHERE clauses.
● It uses a small number of columns from a larger table or materialized view.
● It uses expressions such as LIKE, SUBSTR, or TRIM.

● Aggregation functions
○ They only use the following expressions: SUM, MIN, MAX, AVG, and COUNT.
○ They are at the beginning of the query fragment of a columnar scan.
○ They are ungrouped, or are grouped-by base columns.

● ORDER-BY: only if the operator is on the result of a columnar scan.
● SORT: only if the operator is on the result of a columnar scan and sorts only on the base

columns of the table or the materialized view.
● LIMIT: only if the operator is on a result of a columnar scan and is before any SORT or

GROUP BY operators.
● INNER HASH JOIN: only if the keys used are columns and no join qualifiers are used.

For more information about which queries work best with the columnar engine, and whether the
columnar engine was used by a query and how, see "Verify usage of the columnar engine using
EXPLAIN" in this guide.

Use the columnar engine

To use the columnar engine in an AlloyDB instance, perform these high-level steps:

1. Enable the columnar engine on the instance. Enabling the engine is a one-time
operation and requires a restart.

2. Add columns to the column store. To add columns to the column store, use one of the
following methods:

● Use auto-columnarization, which analyzes your workload and automatically adds
columns.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/columnar-engine/manage-content-recommendations#recommend-populate
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

● Add the columns manually based on your knowledge of the workload on the
databases in the instance.

3. You can track what's in the column store using the g_columnar_relations view, and,
after columns have been added, you can use the EXPLAIN statement to verify usage of
the columnar engine in SQL queries.

For more information about how to use the columnar engine, see "Configure the columnar
engine" in this guide.

What data you can add to the column store
There are some limitations on the data types and data sources that you can use when you add
columns to the column store.

Supported data types
The columnar engine supports only columns with the following built-in data types:

● array
● bigint
● boolean
● bytea
● char
● date
● decimal
● double precision
● enum
● float4
● float8
● integer
● json
● jsonb
● numeric
● real
● serial
● short
● smallint
● text
● timestamp
● uuid
● varchar

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Note: The columnar engine ignores attempts to manually add columns that contain unsupported
data types to the column store.

Unsupported data sources
The columnar engine doesn't support tables or materialized views with the following attributes
as data sources:

● Non-leaf partitioned tables
● Foreign tables
● Tables or views with fewer than 5,000 rows

Columnar engine limitations
● If you're running an analytical query on a column that has an index, then the AlloyDB

optimizer might choose to use row-store with an index scan.
● Columns that you add to the column store manually aren't automatically removed. To

force-remove manually added columns, use google_columnar_engine_drop() on
your instance.

● Auto-columnarization might dynamically add and remove columns based on your
workload.

● Not all data types are supported by the columnar engine. For more information, see
"Supported data types" in this guide.

● Frequent updates to rows invalidate columnar data. To validate a table or a materialized
view in the columnar store, you can either reduce the update frequency or schedule
more frequent refreshes from row-store to the columnar engine. To check whether your
table or view is impacted, you can compare the invalid_block_count and
total_block_count columns in g_columnar_relations. If you have frequent or
high-volume changes to your table or view, then the invalid_block_count will be
high.

Configure the columnar engine

This section describes how to enable or disable the columnar engine on an AlloyDB Omni
database cluster. It also covers how to configure an appropriate initial size for its column store.

Enable the columnar engine
To use columnar engine on an instance, set the instance's
google_columnar_engine.enabled flag to on.

To set this flag on an instance, follow these steps:
1. Run the ALTER SYSTEM PostgreSQL command:

ALTER SYSTEM SET google_columnar_engine.enabled = 'on';

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

2. Optional: Configure the size of the column store before you restart the database server.
See "Configure the size of the column store" in this guide.

3. Restart the database server. See "Manage AlloyDB Omni instances" in the AlloyDB
Omni Configuration Guide.

Configure the size of the column store
While the columnar engine is enabled on an instance, AlloyDB allocates a portion of the
instance's memory to store its columnar data. Dedicating high-speed RAM to your column store
helps AlloyDB access the columnar data as rapidly as possible.

You can also set the allocation to a fixed and specific size using the
google_columnar_engine.memory_size_in_mb flag. To set this flag on an instance,
follow these steps:

1. Run the ALTER SYSTEM PostgreSQL command:
ALTER SYSTEM SET google_columnar_engine.memory_size_in_mb =
COLUMN_STORE_SIZE;

Replace COLUMN_STORE_SIZE with the new size of the column store, in megabytes.

2. Restart the database server. See "Manage AlloyDB Omni instances" in the AlloyDB
Omni Configuration Guide.

Enable vectorized join
The columnar engine has a vectorized join feature that can improve the performance of joins by
applying vectorized processing to qualifying queries.

After you enable vectorized join, the AlloyDB query planner has the option to apply the
vectorized join operator instead of the standard PostgreSQL hash join operator, depending on
the cost. The vectorized join node is shown in the explain plan.

To enable vectorized join on an instance, set the instance's
google_columnar_engine.enable_vectorized_join flag to on.

To set this flag on an instance, run the ALTER SYSTEM PostgreSQL command:

ALTER SYSTEM SET google_columnar_engine.enable_vectorized_join = 'on';

AlloyDB allocates one thread to the vectorized join feature by default. You can increase the
number of threads available to this feature by setting the
google_columnar_engine.vectorized_join_threads flag to a larger value.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Manually refresh your columnar engine
By default, the columnar engine is set to automatically refresh the column store in the
background when enabled. You might need to manually refresh the columnar store in certain
situations, such as if auto-refresh doesn't refresh a relation with a high number of invalid blocks.

To manually refresh the column engine, run the following SQL query:

SELECT google_columnar_engine_refresh('TABLE_NAME');

Replace TABLE_NAME with the name of the table or the materialized view that you want to
manually refresh.

Disable the columnar engine

To disable the columbar engine on an instance, set the google_columnar_engine.enabled
flag to off.

To set this flag on an instance, follow these steps:

1. Run the ALTER SYSTEM PostgreSQL command:
ALTER SYSTEM SET google_columnar_engine.enabled = 'off';

2. Restart the database server. See "Manage AlloyDB Omni instances" in the AlloyDB
Omni Configuration Guide.

Troubleshoot the columnar engine

Fix an insufficient shared memory error

If you run AlloyDB Omni without enough shared memory for the columnar engine to use, then
you might see the following error:

Insufficient shared memory for generating the columnar formats.

You can address this issue by specifying the amount of shared memory that's available to the
AlloyDB Omni container. The process varies depending on your host operating system.

Linux

Increase the size of your host machine's /dev/shm partition using a technique such as editing
your /etc/fstab file.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

To do this, you must have installed AlloyDB Omni with your /dev/shm directory mounted on the
container, as shown in Customize your AlloyDB Omni installation.

macOS

Install a new AlloyDB Omni container, specifying a larger shared-memory value for the
--shm-size flag.

Fix columns not ge�ing populated
If columns don't populate in the columnar engine, then one of the following situations might be
true:

● The columns that you want to add include an unsupported data type.
● The requirements of the columnar engine aren't being met.

To find the cause of this issue, try the following:
● Confirm that the tables or materialized views in our query are in the columnar engine.
● Verify the usage of the columnar engine using the EXPLAIN statement.

Monitor the columnar engine
This section describes how to monitor utilization of the columnar engine.

Verify usage of the columnar engine using EXPLAIN

You can verify the usage of the columnar engine by using the EXPLAIN statement to observe
the new columnar operators that appear in a query's generated query plan.

EXPLAIN (ANALYZE,COSTS OFF,BUFFERS,TIMING OFF,SUMMARY OFF)
SELECT l_returnflag, l_linestatus, l_quantity, l_extendedprice,

l_discount, l_tax
FROM lineitem
WHERE l_shipdate <= date '1992-08-06'

;
QUERY PLAN

--

Append (actual rows=3941797 loops=1)

Buffers: shared hit=9
-> Custom Scan (columnar scan) on lineitem (actual rows=3941797

loops=1)
Filter: (l_shipdate <= '1992-08-06'::date)
Rows Removed by Columnar Filter: 56054083
Columnar cache search mode: columnar filter only

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/omni/install
https://cloud.google.com/alloydb/docs/omni/install
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Buffers: shared hit=9
-> Seq Scan on lineitem (never executed)
Filter: (l_shipdate <= '1992-08-06'::date)

● Custom Scan (columnar scan) indicates that columnar-engine scanning is being
included in the query plan.

● Rows Removed by Columnar Filter lists the number of rows filtered out by the
columnar vectorized execution.

● Columnar cache search mode can be columnar filter only, native, or row
store scan. The planner chooses the search mode automatically based on costing
and pushdown evaluation capability.

When the planner chooses the native mode, it pushes down some of the columnar operators
to the scan:

● Rows Aggregated by Columnar Scan lists the number of rows that are
aggregated.

● Rows Sorted by Columnar Scan lists the number of rows that are sorted.
● Rows Limited by Columnar Scan lists the limited number of rows that were

scanned.

With joins, columnar scan operators can also use the late materialization mode.

EXPLAIN (ANALYZE,COSTS OFF,BUFFERS,TIMING OFF,SUMMARY OFF)
SELECT l_shipmode, o_orderpriority

FROM orders, lineitem
WHERE o_orderkey = l_orderkey

AND l_shipmode in ('AIR', 'FOB')
AND l_receiptdate >= date '1995-01-01'

;
QUERY PLAN

--

Hash Join (actual rows=9865288 loops=1)

Hash Cond: (lineitem.l_orderkey = orders.o_orderkey)
Buffers: temp read=127738 written=127738
-> Append (actual rows=9865288 loops=1)

-> Custom Scan (columnar scan) on lineitem (actual rows=9865288
loops=1)

Filter: ((l_shipmode = ANY ('{AIR,FOB}'::bpchar[])) AND
(l_receiptdate >= '1995-01-01'::date))

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Rows Removed by Columnar Filter: 50130592
Columnar cache search mode: native

-> Index Scan using idx_lineitem_orderkey_fkidx on lineitem
(never executed)

Filter: ((l_shipmode = ANY ('{AIR,FOB}'::bpchar[])) AND
(l_receiptdate >= '1995-01-01'::date))

-> Hash (actual rows=15000000 loops=1)
Buckets: 1048576 Batches: 32 Memory Usage: 37006kB
Buffers: temp written=83357
-> Append (actual rows=15000000 loops=1)

-> Custom Scan (columnar scan) on orders (actual
rows=15000000

loops=1)
Rows Removed by Columnar Filter: 0
Columnar projection mode: late materialization
Columnar cache search mode: native

-> Seq Scan on orders (never executed)

Columnar projection mode can be late materialization. Columnar operators choose this
mode automatically when the planner optimizes the projection by deferring the materialization of
some column values.

View information about tables with columns in the column store
You can view information about the tables or the materialized views with columns in the column
store by querying the g_columnar_relations view.

SELECT * FROM g_columnar_relations;

┌─[RECORD 1]────────┬───────────────────┐
│ relation_name │ tbl_parallel_test │
│ schema_name │ public │
│ database_name │ advisor │
│ status │ Usable │
│ size │ 581431259 │
│ columnar_unit_count │ 3 │
│ invalid_block_count │ 0 │
│ total_block_count │ 8337 │
├─[RECORD 2]────────┼───────────────────┤
│ relation_name │ lineitem │
│ schema_name │ public │

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

│ database_name │ advisor │
│ status │ Usable │
│ size │ 423224944 │
│ columnar_unit_count │ 29 │
│ invalid_block_count │ 0 │
│ total_block_count │ 115662 │
├─[RECORD 3]────────┼───────────────────┤

View information about the columns in the column store
You can view information about the columns in the column store by querying the
g_columnar_columns view, including those columns' size and the last access time.

SELECT database_name, schema_name, relation_name, column_name,
size_in_bytes, last_accessed_time FROM g_columnar_columns;

View columnar engine execution statistics for recent queries
You can view columnar engine execution statistics for recent queries using the
g_columnar_stat_statements view. This view adds columnar engine statistics to the
pg_stat_statements view provided by the pg_stat_statements extension. To use this
view, you must first enable the pg_stat_statements extension.

1. Enable the pg_stat_statements extension:

CREATE EXTENSION pg_stat_statements;

2. Make the queries whose statistics you want to view. You can do this manually, or you
can let enough time pass so that your applications make these queries with
pg_stat_statements enabled.

3. Query the g_columnar_stat_statements and pg_stat_statements views. Note
the following query retrieves all the columnar execution statistics including those that
were collected before the extension pg_stat_statements was created. The null value
of userid indicates that the statistics were collected before the extension
pg_stat_statements was created.

SELECT *
FROM pg_stat_statements(TRUE) AS pg_stats

FULL JOIN g_columnar_stat_statements AS g_stats
ON pg_stats.userid = g_stats.user_id AND

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

pg_stats.dbid = g_stats.db_id AND
pg_stats.queryid = g_stats.query_id

WHERE columnar_unit_read > 0;

┌─[RECORD 1]────────┬───────────────────────────────
│ userid │ 10 │
│ dbid │ 33004 │
│ queryid │ 6779068104316758833 │
│ query │ SELECT l_returnflag, ↵│
│ │ l_linestatus, ↵│
│ │ l_quantity, ↵│
│ │ l_extendedprice, ↵│
│ │ l_discount, ↵│
│ │ l_tax ↵│
│ │FROM lineitem ↵│
│ │WHERE l_shipdate <= date $1│
│ calls │ 1 │
│ total_time │ 299.969983 │
│ min_time │ 299.969983 │
│ max_time │ 299.969983 │
│ mean_time │ 299.969983 │
│ stddev_time │ 0 │
│ rows │ 392164 │
│ shared_blks_hit │ 0 │
│ shared_blks_read │ 0 │
│ shared_blks_dirtied │ 0 │
│ shared_blks_written │ 0 │
│ local_blks_hit │ 0 │
│ local_blks_read │ 0 │
│ local_blks_dirtied │ 0 │
│ local_blks_written │ 0 │
│ temp_blks_read │ 0 │
│ temp_blks_written │ 0 │
│ blk_read_time │ 0 │
│ blk_write_time │ 0 │
│ user_id │ 10 │
│ db_id │ 33004 │
│ query_id │ 6779068104316758833 │
│ columnar_unit_read │ 29 │
│ page_read │ 115662 │

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

│ rows_filtered │ 0 │
│ columnar_scan_time │ 0 │
└─────────────────────┴───────────────────────────────┘

View column store memory usage
To see the amount of unused RAM available to the columnar engine, you can query the
google_columnar_engine_memory_available() function. The resulting integer shows
the available memory in megabytes (MB).

SELECT google_columnar_engine_memory_available();

Store, index, and query vector embeddings with pgvector
AlloyDB includes optimizations that let it work especially well with the pgvector extension. You
can create indexes on vector-storing columns that can significantly speed up certain queries.

Query and index embeddings using pgvector
The pgvector PostgreSQL extension lets you use vector-specific operators and functions
when you store, index, and query text embeddings in your database. AlloyDB has its own
optimizations for working with pgvector, letting you create indexes that can significantly speed
up certain queries that involve embeddings.

Create an optimized nearest-neighbor index

Stock pgvector supports approximate nearest-neighbor searching through indexing. AlloyDB
adds to this support with a scalar quantization feature that you can specify when you create an
index. When enabled, scalar quantization can significantly speed up queries that have larger
dimensional vectors, and lets you store vectors with up to 8,000 dimensions.

Note: As an alternative to using the ivf index type described by this section, a
Google-developed index type for nearest-neighbor searching is available for AlloyDB Omni as a
Technology Preview. For more information, see "Preview the ScaNN algorithm" in this guide.

To enable scalar quantization on a pgvector-based index, specify ivf as the index method,
and SQ8 as the quantizer:

Did you find this document helpful? Please send us your feedback.

https://github.com/pgvector/pgvector#indexing
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

CREATE INDEX ON TABLE
USING ivf (EMBEDDING_COLUMN DISTANCE_FUNCTION)
WITH (lists = LIST_COUNT, quantizer = 'SQ8');

Replace the following:
● : the table to add the index to
● : a column that stores vector data
● : the distance function to use with this index. Choose one of the

following:
● L2 distance: vector_l2_ops
● Inner product: vector_ip_ops
● Cosine distance: vector_cosine_ops

● : the number of lists to use with this index

To create this index on an embedding column that uses the real[] data type instead of
vector, cast the column into the vector data type:

CREATE INDEX ON TABLE
USING ivf ((CAST(EMBEDDING_COLUMN AS vector(DIMENSIONS)))'}}

DISTANCE_FUNCTION)
WITH (lists = LIST_COUNT, quantizer = 'SQ8');

Replace with the dimensional width of the embedding column.

The next section demonstrates an example of this kind of index.

Make a nearest-neighbor query with given text

After you have stored and indexed embeddings in your database, the full range of pgvector
query functionality becomes available to you.

To find the nearest semantic neighbors to a given piece of text, you can use the embedding()
function to translate the text into a vector. In the same query, you apply this vector to the
pgvector nearest-neighbor operator, <->, to find the database rows with the most
semantically similar embeddings.

By default, the operator <-> calculates the L2 distance between vectors. If you build the index
using cosine distance and try to use the operator <->, then the index isn't used. The following
example is meant for using an L2 distance function. Build your index using the same function.

Did you find this document helpful? Please send us your feedback.

TABLE
EMBEDDING_COLUMN
DISTANCE_FUNCTION

LIST_COUNT

DIMENSIONS

https://github.com/pgvector/pgvector#querying
https://github.com/pgvector/pgvector#querying
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

Because embedding() returns a real array, you must explicitly cast the embedding() call to
vector in order to use these values with pgvector operators.

SELECT RESULT_COLUMNS FROM TABLE
ORDER BY EMBEDDING_COLUMN
<-> embedding('MODEL_IDVERSION_TAG', 'TEXT')::vector
LIMIT ROW_COUNT

Replace the following:
● : the columns to display from semantically similar rows.
● : the table containing the embedding to compare the text to.
● : the column containing the stored embeddings.
● : the ID of the model to query. We recommend that you specify the model

version. You must use the same version that you used to build data for the embedding
column. If you're using the Vertex AI Model Garden, then specify a
textembedding-gecko or textembedding-gecko-multilingual version here.
These are the cloud-based models that AlloyDB can use for text embeddings. For more
information, see Text embeddings.

● Optional: : the version tag of the model to query. Prepend the tag with @.
If you are using one of the textembedding-gecko models with Vertex AI, then specify
one of the version tags listed in Model versions. Google strongly recommends specifying
the version tag. Not doing so risks unexpected results. For more information, see "Use
model version tags to avoid errors" in this guide.

● : the text you want to find the nearest stored semantic neighbors of.
● : the number of rows to return. Specify 1 if you want only the single best

match.

To run this query with a stored embedding column that uses the real[] data type instead of
vector, cast the column into the vector data type as well:

SELECT RESULT_COLUMNS::vector FROM TABLE
ORDER BY EMBEDDING_COLUMN
<-> embedding('MODEL_IDVERSION_TAG', 'TEXT')::vector
LIMIT ROW_COUNT

Did you find this document helpful? Please send us your feedback.

RESULT_COLUMNS
TABLE
EMBEDDING_COLUMN
MODEL_ID

VERSION_TAG

TEXT
ROW_COUNT

https://cloud.google.com/alloydb/docs/ai/configure-vertex-ai
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text-embeddings#model_versions
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

Preview the ScaNN algorithm

AlloyDB Omni version 15.5.1 and later includes a Technology Preview of alloydb_scann, a
PostgreSQL extension developed by Google that implements a highly efficient nearest-neighbor
index powered by the ScaNN algorithm.

You can experiment with the scann index type as an alternative to index types provided by the
pgvector extension, including the ivf index type whose use is described in "Create an
optimized nearest-neighbor index" in this guide. The scann index type is compatible with
columns using the pgvector-provided vector data type.

Because the scann index type is available as a Preview, we don't recommend applying it to
production workloads.

To enable use of the scann index type, run the following CREATE EXTENSION DDL queries on
a database running in an AlloyDB Omni cluster:

CREATE EXTENSION IF NOT EXISTS vector;
CREATE EXTENSION IF NOT EXISTS alloydb_scann;

To apply an index using the ScaNN algorithm to a column containing stored vector embeddings,
run the following DDL query:

CREATE INDEX ON TABLE
USING scann (EMBEDDING_COLUMN DISTANCE_FUNCTION)
WITH (num_leaves=LEAVES_COUNT, quantizer='sq8');

Replace the following:
● : the table to add the index to.
● : a column that stores vector data.
● : the distance function to use with this index. Choose one of the

following:
● L2 distance: l2
● Dot product: dot_product
● Cosine distance: cosine

● : the number of partitions to apply to this index. For information on
finding an optimal value for this parameter, see "Tune a scann index" in this guide.

Did you find this document helpful? Please send us your feedback.

TABLE
EMBEDDING_COLUMN
DISTANCE_FUNCTION

LEAVES_COUNT

https://github.com/google-research/google-research/blob/master/scann/docs/algorithms.md
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

To create this index on an embedding column that uses the real[] data type instead of
vector, cast the column into the vector data type:

CREATE INDEX ON TABLE
USING scann (CAST(EMBEDDING_COLUMN AS vector(DIMENSIONS))

DISTANCE_FUNCTION)
WITH (num_leaves=LEAVES_COUNT, quantizer='sq8');

Replace with the dimensional width of the embedding column.

The samples for building a scann index require 50 * * * 4
bytes of memory. This is because each partition of a scann index contains 50 samples, and the
index stores its own data in 4-byte floats. Before building a scann index, make sure that your
database's maintenance_work_mem flag is set to a value sufficient for the memory required.

Optionally, you can set the following database flags to tune the behavior of the
alloydb_scann extension:

scann.num_leaves_to_search

To improve the accuracy of queries made using the index, at the cost of query speed, increase
this value prior to calling the queries. The maximum meaningful value is the value of
num_leaves that you specify when creating the index. The default value is 1.

scann.pre_reordering_num_neighbors

To help your query achieve higher recall, set this flag to a value greater than the number of
neighbors returned by the query. Increasing this value does carry a performance cost.

To set the value of these flags, use the SET PostgreSQL command. After you create the index,
you can run nearest-neighbor search queries that make use of the index by following the
instructions in "Make a nearest-neighbor query with given text" in this guide.

Tune a scann index

To achieve both a high query-per-second rate (QPS) and a high recall with your
nearest-neighbor queries, you must partition the tree of your scann index in a way that is most
appropriate to your data and your queries. You do this by adjusting the values of the
num_leaves index parameter and the scann.num_leaves_to_search database flag.

Did you find this document helpful? Please send us your feedback.

DIMENSIONS

LEAVES_COUNT DIMENSIONS

https://www.postgresql.org/docs/current/sql-set.html
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Through iterative tuning, you can find the optimal values of these variables for your workload. To
tune your index, you build, test, adjust, and rebuild the index until your test queries reach the
right balance of recall and QPS.

The following general recommendations apply when tuning your scann index parameters:
● Creating more partitions—also known as leaves—provides better recall. It also increases

the size of the tree, and therefore the time required to build the index.
● For partitioning stability, each partition should have at least 100 data points, on average.

For this reason, you shouldn't set the value of num_leaves to a number greater than
the number of indexed rows divided by 100.

● For better performance, a nearest-neighbor query should spend most of its search time
in leaf processing. To help ensure this, set num_leaves to a multiple of the square root
of the indexed table's row count, as described by the following procedure.

To apply these recommendations to help you find the optimal values of num_leaves and
num_leaves_to_search for your dataset, follow these steps:

1. Create the scann index with num_leaves set to the square root of the indexed table's
row count.

2. Run your test queries, increasing the value of scann.num_of_leaves_to_search,
until you achieve your target recall range–for example, 95%.

3. Take note of the ratio between scann.num_leaves_to_search and num_leaves.
4. If your QPS is too low when your queries achieve a target recall, then follow these steps:

a. Recreate the index, increasing the value of num_leaves and
scann.num_leaves_to_search according to the following guidance:

● Set num_leaves to a larger factor of the square root of your row count.
For example, if the index has num_leaves set to the square root of your
row count, try setting it to double the square root. If it is already double,
then try setting it to triple the square root.

● Increase scann.num_leaves_to_search as needed in order to
maintain its ratio with num_leaves, which you noted in an earlier step.

● Don't set num_leaves to a value greater than the row count divided by
100.

b. Run the test queries again. While doing so, you can experiment with reducing
scann.num_leaves_to_search, finding a value that increases QPS while
keeping your recall high. You can try different values of
scann.num_leaves_to_search without rebuilding the index.

c. Repeat this step until both the QPS and the recall range have reached
acceptable values.

Use model version tags to avoid errors

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Caution: To avoid inconsistent results from the embedding() function, always specify a stable
embeddings model, including a version tag.

Google strongly recommends that you always use a stable version of your chosen embeddings
model. For most models, this means explicitly setting a version tag.

Calling the embedding() function without specifying the version tag of the model is
syntactically valid, but it is also error-prone.

If you omit the version tag when using a model in the Vertex AI Model Garden, then Vertex AI
uses the latest version of the model. This might not be the latest stable version. For more
information about available Vertex AI model versions, see Model versions.

A given Vertex AI model version always returns the same embedding() response to given text
input. If you don't specify model versions in your calls to embedding(), then a new published
model version can abruptly change the returned vector for a given input, causing errors or other
unexpected behavior in your applications.

To avoid these problems, always specify the model version.

Query your database using natural language
This section describes a Technology Preview available with AlloyDB Omni that lets you
experiment with querying your database using natural language.

You can use AlloyDB Omni to preview a set of experimental features that allows your
database-driven application to more securely execute natural-language queries from your
application's users, such as "Where is my package?" or "Who is the top earner in each
department?" AlloyDB Omni translates the natural-language input into a SQL query specific to
your database, restricting the results only to what the user of your application is allowed to view.

The power and risks of natural-language queries
Large language models, such as Gemini Pro, can enable your application to run database
queries based on natural-language queries created by your application's end users. For
example, a model with access to your application's database schema can take end-user input
like the following and translate it into a SQL query:

What are the cheapest direct flights from Boston to Denver in July?

The SQL query might look something like this:

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text-embeddings#model_versions
https://blog.google/technology/ai/google-gemini-ai/
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

SELECT flight.id, flight.price, carrier.name, [...]
FROM [...]
WHERE [...]
ORDER BY flight.price ASC
LIMIT 10

Natural-language queries can provide your application a powerful tool for serving your users.
However, this technology also comes with clear security risks that you must consider before you
allow end users to run arbitrary queries on your database tables. Even if you have configured
your application to connect to your database as a limited-access, read-only database user, an
application that invites natural-language queries can be vulnerable to the following:

● Malicious users can submit prompt-injection attacks, trying to manipulate the underlying
model to reveal all the data the application has access to.

● The model itself might generate SQL queries broader in scope than is appropriate,
revealing sensitive data in response to even well-intentioned user queries.

Sanitize queries with parameterized secure views
To help mitigate the risks described in the previous section, Google has developed
parameterized secure views, an experimental feature that you can preview using the techniques
described in this section.

Parameterized secure views let you explicitly define the tables and columns that
natural-language queries can pull data from, and add additional restrictions on the range of rows
available to an individual application user. These restrictions let you tightly control the data that
your application's users can see through natural-language queries, no matter how your users
phrase these queries.

If you enable this Technology Preview, then you get access to an experimental extension
developed by Google called alloydb_ai_nl. This extension provides the following features:

● Parameterized secure views, a variant of SQL views for restricting the range of data that
a query can access.

● The google_exec_param_query() function, which lets you query your parameterized
secure views.

● The google_get_sql_current_schema() function, which converts natural language
queries into SQL queries of tables and views in your current schema.

The following sections describe how to use these features and demonstrate how they can work
together.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

Unset

Before you begin
Install AlloyDB Omni version 15.5.1 or later, including AI model integration. For more
information, see "Install AlloyDB Omni with AlloyDB AI" in the AlloyDB Omni Installation Guide.

Set up your database for parameterized secure views

1. Connect to your AlloyDB Omni cluster using psql.
2. Edit the contents of your postgresql.conf file so that the value of the

shared_preload_libraries directive includes alloydb_ai_nl. The edited
directive looks similar to the following:

shared_preload_libraries='g_stats,google_job_scheduler,google_insigh
ts,pg_stat_statements,google_db_advisor,google_columnar_engine,alloy
db_ai_nl'

Note: If you are running the Preview of simplified installation method for AlloyDB Omni,
then you might need to add the shared_preload_libraries directive to your
postgresql.conf file, with 'alloydb_ai_nl' as its entire value.

3. Stop AlloyDB Omni.
4. Start AlloyDB Omni.
5. Enable the alloydb_ai_nl extension:

CREATE EXTENSION google_ml_integration with version '1.3';

ALTER SYSTEM SET google_ml_integration.enable_model_support=on;
ALTER SYSTEM SET alloydb_ai_nl.enabled=on;
SELECT pg_reload_conf();
CREATE EXTENSION alloydb_ai_nl;

6. Register a new language model based on the Gemini Pro API with model endpoint
management:

CALL google_ml.create_model(

model_id => 'MODEL_ID',
model_request_url =>

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/omni/run-connect
https://cloud.google.com/alloydb/docs/omni/configure-omni
https://cloud.google.com/alloydb/docs/omni#one-omni
https://cloud.google.com/alloydb/docs/omni/run-connect#stop
https://cloud.google.com/alloydb/docs/omni/run-connect#start
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

'https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_I
D/locations/us-central1/publishers/google/models/gemini-pro:streamGe
nerateContent',

model_provider => 'google',
model_auth_type => 'alloydb_service_agent_iam');

Replace the following:
● : an ID to assign to this model. For more information about model

endpoint management, see "Register and call remote AI models in AlloyDB
Omni" in this guide.

● : the ID of your Google Cloud project.
7. Create a new database user. Don't grant it any permissions or roles yet. A subsequent

step in this procedure grants the user the permissions that it requires.

Warning: Don't skip this step. Always use a database user with carefully limited access
to execute natural-language queries. Not doing so risks uncontrolled data exposure.

Parameterized secure views
A parameterized secure view works a lot like an ordinary PostgreSQL secure view: a stored
SELECT statement, essentially. Parameterized secure views additionally allow you to require
one or more named parameter values passed to the view when querying it, somewhat like bind
variables with ordinary database queries.

For example, imagine running an application whose database tracks shipments of items to
customers. A user logged into this application with the ID of 12345 types in the query Where
is my package?. Using parameterized secure views, you can make sure that the following
requirements apply to how AlloyDB for PostgreSQL executes this query:

● The query can read only the database columns that you have explicitly listed in your
database's parameterized secure views. In this case, that might be certain columns in
your items, users, and shipments tables.

● The query can read only the database rows associated with the user who asked the
query. In this case, that might require that returned rows have a data relationship with
the users table row whose id column value is 12345.

Create a parameterized secure view

To create a parameterized secure view, use the PostgreSQL CREATE VIEW DDL command
with the following attributes:

● Create the view with the security_barrier option.

Did you find this document helpful? Please send us your feedback.

MODEL_ID

PROJECT_ID

https://www.postgresql.org/docs/current/sql-createuser.html
https://www.postgresql.org/docs/current/sql-createview.html
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

● To restrict application users to seeing only the rows they're allowed to see, add required
parameters using the $@ syntax in the WHERE clause. A common
case is checking the value of a column using WHERE = $@

.

The following example parameterized secure view allows access to three columns from a table
named users, and limits the results only to rows where users.id matches a required
parameter:

CREATE VIEW user_psv WITH (security_barrier) AS
SELECT

username,
full_name,
birthday

FROM
users

WHERE
users.id = $@user_id;

The SELECT statements at the core of parameterized secure views can be as complex as the
statements allowed by ordinary PostgreSQL views.

After you create a view, you must then grant the user you created earlier permission to run
SELECT queries on the view:

GRANT SELECT ON VIEW_NAME TO NL_DB_USER;

Replace the following:
● : The name of the view that you created in the previous step.
● : The name of the database user that you have designated to execute

natural language queries.

Query a parameterized secure view
Despite their similarity to ordinary PostgreSQL views, you can't query parameterized secure
views directly. Instead, you use the google_exec_param_query() function provided by the
alloydb_ai_nl extension. The function has the following syntax:

Did you find this document helpful? Please send us your feedback.

PARAMETER_NAME
COLUMN

PARAMETER_NAME

VIEW_NAME
NL_DB_USER

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

SELECT * FROM
alloydb_ai_nl.google_exec_param_query(

query => SQL_QUERY
param_names => ARRAY [PARAMETER_NAMES],
param_values => ARRAY [PARAMETER_VALUES]

)

Replace the following:
● : A SQL query whose FROM clause refers to one or more parameterized

secure views.
● : A list of parameter names to pass in, as strings.
● : A list of parameter values to pass in. This list must be of the

same size as the param_names list. The order of the values matches the order of the
names.

The function returns a table of JSON objects. Each row in the table is equivalent to the
row_to_json() value of the original query result row.

In typical use, the value of the query argument is generated not by your own code, but instead
by an AI model that you have integrated your AlloyDB for PostgreSQL database with.

The following example shows how you might query a parameterized secure view in Python, and
then display its results. It builds on the user_psv example view from the previous section:

Assume a get_user_id() function that returns the ID of the current
application user.
app_user_id = get_user_id()

pool = await asyncpg.create_pool(
host=INSTANCE_IP
user=NL_DB_USER
password=NL_DB_PASSWORD
database=DB_NAME

)

table_name = "user_psv"

Did you find this document helpful? Please send us your feedback.

SQL_QUERY

PARAMETER_NAMES
PARAMETER_VALUES

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

query = f"""
SELECT

full_name,
birthday

FROM
{table_name}

"""
params = {

"user_id": app_user_id
}

param_query = f"""
SELECT * FROM alloydb_ai_nl.google_exec_param_query(

query => '{query}',
param_names => $1,
param_values => $2

);
"""

sql_results = await pool.execute(
param_query,
params.keys(),
params.values()

)

for row in sql_results:
print(json.loads(row))

Execute a natural-language query
Note: The functions described by this section are included in this Technology Preview to let you
test and experiment with natural-language processing using parameterized secure views. The
functions don't provide context awareness beyond basic schema data or disambiguation
capabilities.

Executing a natural-language query using parameterized secure views is a two-step process:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

1. As a database user with only SELECT access to the appropriate parameterized secure
views, convert the natural language query to SQL using a large language model.

2. Use the google_exec_param_query() function to process the SQL, binding it to
parameter values appropriate to the current user session.

The following sections describe these steps in further detail.

Convert natural language to SQL

To translate natural-language input into SQL, use the google_get_sql_current_schema()
function that is included with the parameterized secure views Technology Preview:

SELECT alloydb_ai_nl.google_get_sql_current_schema(
sql_text => 'NL_TEXT',
model_id => 'MODEL_ID',
prompt_text => 'HINT_TEXT'

);

Replace the following:
● : The natural-language text to turn into a SQL query.
● : The ID of the model that you registered with the model catalog when

setting up your database for parameterized secure views.
● : Additional information about the database schema, expressed in natural

language. This lets you give the model additional hints about important aspects of the
schema that it might not extract only by analyzing the table, column, and relationship
structures. As an example: When joining flights and seats, be sure to join on
flights.id = seats.flight_id.

Warning: Your application must run google_get_sql_current_schema() as the database
user that you created specifically to execute natural-language queries. Not doing so risks
uncontrolled data exposure.

The output of the function is a string containing a SQL query.

Run the converted SQL using parameters
After converting the natural-language query to SQL, you can call
google_exec_param_query() as described earlier in this section, passing in any
parameters that your parameterized secure views might need.

Did you find this document helpful? Please send us your feedback.

NL_TEXT
MODEL_ID

HINT_TEXT

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

The function works if you pass it more parameters than it needs with a given query, so you can
call it with all of the parameters used by all of the parameterized secure views that your
application has values for. The function throws an exception if it tries to run a query requiring an
undefined parameter.

An example of executing a natural-language query
This section demonstrates a complete flow from natural-language input to SQL result set. The
code samples show the underlying SQL queries and functions that an application runs.

For this example flow, assume the following about your application:
● Your database-driven application tracks product shipments to customers.
● You have registered a Gemini Pro-based model named my-gemini-model in the

Model Catalog.
● You have defined a parameterized secure view in your database named

shipment_view.
● The view selects data from several tables relevant to shipments to customers.
● The view requires a user_id parameter, whose value is the ID of an end user of

the application.

The following shows the example flow:
1. An end user whose application user ID is 12345 types Where is my package? into

your web application.
2. Your application calls google_get_sql_current_schema() to translate the input

into SQL:

SELECT alloydb_ai_nl.google_get_sql_current_schema(

sql_text => 'Where is my package?'
model_id => 'my-gemini-model'

);

3. This call returns a string containing a single SQL SELECT query. The query is limited
only to the parameterized secure views visible to the database user that you created to
work with parameterized secure views. The SQL generated from Where is my
package? might resemble the following:

SELECT current_location, ship_date, ship_eta FROM shipment_view;

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

4. Because shipment_view is a parameterized secure view and not an ordinary
PostgreSQL view, your application must use google_exec_param_query() to
securely run the query with the user_id parameter that it requires, as shown in the next
step.

5. Your application passes the SQL to google_exec_param_query(), along with the
parameters that constrain the output. In our example, that is the ID of the application end
user who provided the input:

SELECT * FROM

alloydb_ai_nl.google_exec_param_query(
query => 'SELECT current_location, ship_date, ship_eta FROM

shipment_view',
param_names => ['user_id'],
param_values => ['12345']

);

6. The output is a SQL result set, expressed as JSON data.
7. Your application handles the JSON data as needed.

Database design for natural-language handling
Caution: Sensitive information or categories in your database might cause SQL queries
generated from natural-language prompts to reflect biases from the model's training data.
Carefully review your schema prior to applying the techniques described in this section.

The google_get_sql_current_schema() function provided with this Technology Preview
serves mainly to demonstrate the functionality of parameterized secure views, giving you an
early opportunity to experiment with this developing technology. As with any Preview, you
shouldn't apply this function to an application in production.

With that in mind, you can apply the advice in this section to improve the quality of
google_get_sql_current_schema() output during your experimentation with it.

Design your schema for human comprehension
In general, give your database structures names and comments clear enough to allow a typical
human developer to infer the purpose of its tables, columns, and relationships. This clarity can
help a large language model generate more accurate SQL queries based on your schema.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Use descriptive names
Prefer descriptive names for tables, columns, and relationships. Avoid abbreviations or
acronyms. For example, the model works better with a table named users than with one
named u.

If it's not feasible to rename existing data structures, provide hints to the model using the
prompt_text argument when calling google_get_sql_current_schema().

Use specific data types
The model can make better inferences about your data if you use more specific data types with
your columns. For example, if you use a column exclusively to store true-or-false values, then
use a boolean data type with true and false instead of an integer with 1 and 0.

Roll back with caution after enabling the Preview
Caution: If you have enabled this Technology Preview, then rolling back AlloyDB Omni without
fully uninstalling the Preview can result in errors.

If you have enabled the parameterized secure views Technology Preview on your database, but
then decide to roll back AlloyDB Omni to a version before 15.5.0, then you must take a few
manual cleanup steps before downgrading.

If you don't take these steps, then any attempt to query, modify, or drop a parameterized secure
view results in a SQL error. This includes queries on your database's view catalog that would
otherwise include parameterized secure views in their results, such as SELECT * FROM
pg_views.

To completely remove this Technology Preview from your database before an AlloyDB Omni
rollback, follow these steps:

1. In psql, use the DROP VIEW command to delete every parameterized secure view in
your database.

2. In psql, use the DROP EXTENSION command to disable the alloydb_ai_nl
extension on your database.

3. In your postgresql.conf file, remove the reference to alloydb_ai_nl from the
shared_preload_libraries directive.

For more information, see Uninstall AlloyDB Omni.

Register and call remote AI models in AlloyDB Omni
This section describes a Preview that lets you experiment with registering AI models and
invoking predictions with model endpoint management in AlloyDB Omni. To use AI models in

Did you find this document helpful? Please send us your feedback.

https://www.postgresql.org/docs/current/sql-dropview.html
https://www.postgresql.org/docs/current/sql-dropextension.html
https://cloud.google.com/alloydb/docs/omni/manage#uninstall
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

production environments, see Build generative AI applications using AlloyDB AI and Work with
vector embeddings.

To register remote models with AlloyDB, see Register and call remote AI models in AlloyDB.

Overview
The model endpoint management Preview lets you register and manage your AI models
metadata in your database cluster, and then interact with the models using SQL queries. It
provides the google_ml_integration extension that includes functions to add and register
the metadata related to the models, and then use the models to generate vector embeddings or
invoke predictions.

Some of the example model types that you can register using model endpoint management are
as follows:

● Vertex AI text embedding models
● Embedding models provided by third-party providers, such as Anthropic, Hugging Face,

or OpenAI
● Custom-hosted text embedding models
● Generic models with a JSON-based API—for example, the

facebook/bart-large-mnli model hosted on Hugging Face or the gemini-pro
model from the Vertex AI Model Garden

How it works
You can use model endpoint management to register models that comply to the following:

● Model input and output supports JSON format.
● Model can be called using the REST protocol.

When you register a model with model endpoint management, it registers each model with a
unique model ID that you provided as a reference to the model. You can use this model ID to
query models:

● Generate embeddings to translate text prompts to numerical vectors. You can store
generated embeddings as vector data when the pgvector extension is enabled in the
database. For more information, see Query and index embeddings with pgvector.

● Invoke predictions to call a model using SQL within a transaction.

Your applications can access the model endpoint management using the
google_ml_integration extension. This extension provides the following functions:

● The google_ml.create_model() SQL function, which is used to register the model
metadata that is used in the prediction or embedding function.

● The google_ml.create_sm_secret() SQL function, which uses secrets in the
Google Cloud Secret Manager, where the API keys are stored.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/ai
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings
https://cloud.google.com/alloydb/docs/ai/model-endpoint-overview
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings#pgvector
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

● The google_ml.embedding() SQL function, which is a prediction function that
generates text embeddings.

● The google_ml.predict_row() SQL function that generates predictions when you
call generic models that support JSON input and output format.

● Other helper functions that handle generating custom URL, generating HTTP headers,
or passing transform functions for your generic models.

● Functions to manage the registered models and secrets.

Key concepts
Before you start using the model endpoint management, understand the concepts required to
connect to and use the models.

Model provider
Model provider indicates the supported model hosting providers. The following table shows the
model provider value that you must set based on the model provider that you use:

Model provider Set in function as…

Vertex AI google

Hugging Face models custom

Anthropic models custom

Other models custom

OpenAI open_ai

The default model provider is custom.

Based on the provider type, the supported authentication method differs. The Vertex AI models
use the AlloyDB service account to authenticate, while other providers can use the Secret
Manager to authenticate. For more information, see "Set up authentication" in this guide.

Model type

Model type indicates the type of the AI model. The extension supports text embedding as well
as any generic model type. The supported model types that you can set when you register a
model are text-embedding and generic. Setting the model type is optional when you
register generic models because generic is the default model type.

Text embedding models with built-in support

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

The model endpoint management provides built-in support for all versions of the
textembedding-gecko model by Vertex AI and the text-embedding-ada-002
model by OpenAI. To register these models, use the google_ml.create_model()
function. AlloyDB automatically sets up default transform functions for these models.

The model type for these models is text-embedding.

Other text embedding models

For other text embedding models, you need to create transform functions to handle the
input and output formats that the model supports. Optionally, you can use the HTTP
header generation function that generates custom headers required by your model.

The model type for these models is text-embedding.

Generic models

The model endpoint management also supports registering of all other model types apart
from text embedding models. To invoke predictions for generic models, use the
google_ml.predict_row() function. You can set model metadata, such as a request
endpoint and HTTP headers that are specific to your model.

You cannot pass transform functions when you are registering a generic model. Ensure
that when you invoke predictions the input to the function is in the JSON format, and that
you parse the JSON output to derive the final output.

The model type for these models is generic.

Authentication

Auth types indicate the authentication type that you can use to connect to the model endpoint
management using the google_ml_integration extension. Setting authentication is optional
and is required only if you need to authenticate to access your model.

For Vertex AI models, the AlloyDB service account is used for authentication. For other models,
the API key or bearer token that is stored as a secret in the Secret Manager can be used with
the google_ml.create_sm_secret() SQL function.

The following table shows the auth types that you can set:

Authentication
method Set in function as… Model provider

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

AlloyDB service agent alloydb_service_agent_iam Vertex AI provider

Secret Manager secret_manager Third-party providers, such as
Anthropic, Hugging Face, or OpenAI

Prediction functions

The google_ml_integration extension includes the following prediction functions:

google_ml.embedding()

Used to call registered text embedding models to generate embeddings. It includes
built-in support for the textembedding-gecko model by Vertex AI and the
text-embedding-ada-002 model by OpenAI.

For text embedding models without built-in support, the input and output parameters are
unique to a model and need to be transformed for the function to call the model. Create
a transform input function to transform input of the prediction function to the model
specific input, and a transform output function to transform model specific output to the
prediction function output.

google_ml.predict_row()

Used to call registered generic models, as long as they support JSON-based API, to
invoke predictions.

Transform functions

Transform functions modify the input to a format that the model understands, and convert the
model response to the format that the prediction function expects. The transform functions are
used when registering the text-embedding models without built-in support. The signature of
the transform functions depends on the prediction function for the model type.

You cannot use transform functions when registering generic models.

The following shows the signatures for the prediction function for text embedding models:

// define custom model specific input/output transform functions.
CREATE OR REPLACE FUNCTION input_transform_function(model_id
VARCHAR(100), input_text TEXT) RETURNS JSON;

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

CREATE OR REPLACE FUNCTION output_transform_function(model_id
VARCHAR(100), response_json JSON) RETURNS real[];

For more information about how to create transform functions, see Transform functions
example.

HTTP header generation function

The HTTP header generation function generates the output in JSON key value pairs that are
used as HTTP headers. The signature of the prediction function defines the signatures of the
header generation function.

The following example shows the signature for the google_ml.embedding() prediction
function.

CREATE OR REPLACE FUNCTION generate_headers(model_id VARCHAR(100),
input TEXT) RETURNS JSON;

For the google_ml.predict_row() prediction function, the signature is as follows:

CREATE OR REPLACE FUNCTION generate_headers(model_id VARCHAR(100),
input JSON) RETURNS JSON;

For more information about how to create a header generation function, see Header generation
function example.

Register a model with model endpoint management
To invoke predictions or generate embeddings using a model, register the model with model
endpoint management.

For more information about the google_ml.create_model() function, see model endpoint
management reference.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference#transform-func-example
https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference#transform-func-example
https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference#header-gen-func-example
https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference#header-gen-func-example
https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference
https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

Unset

Unset

Before you register a model with model endpoint management, you must enable the
google_ml_integration extension and set up authentication based on the model provider, if
your model requires authentication.

Make sure that you access your database with the postgres default username.

Enable the extension

You must add and enable the google_ml_integration extension before you can start using
the associated functions. Model endpoint management requires that the
google_ml_integration version 1.3 extension is installed.

1. Connect to your database using psql.
2. Optional: If the google_ml_integration extension is already installed, alter it to

update the version to 1.3:

ALTER EXTENSION google_ml_integration UPDATE TO '1.3'

3. Add the google_ml_integration version 1.3 extension using psql:

CREATE EXTENSION google_ml_integration VERSION '1.3';

4. Optional: Grant permission to a non-super PostgreSQL user to manage model metadata:

GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA
google_ml TO NON_SUPER_USER;

Replace with the non-super PostgreSQL username.

5. Enable model endpoint management on your database:

ALTER SYSTEM SET google_ml_integration.enable_model_support=on;

SELECT pg_reload_conf();

Did you find this document helpful? Please send us your feedback.

NON_SUPER_USER

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Set up authentication
The following sections show how to set up authentication before adding a Vertex AI model or
models by other providers.

Set up authentication for Vertex AI

To use the Google Vertex AI models, you must add Vertex AI permissions to the service account
that you used while installing AlloyDB Omni. For more information, see Configure your AlloyDB
Omni installation to query cloud-based models.

Set up authentication for other model providers

For all models except Vertex AI models, you can store your API keys or bearer tokens in Secret
Manager. This step is optional if your model doesn't handle authentication through Secret
Manager—for example, if your model uses HTTP headers to pass authentication information or
doesn't use authentication at all.

This section explains how to set up authentication if you are using Secret Manager.

To create and use an API key or a bearer token, complete the following steps:

1. Create the secret in Secret Manager. For more information, see Create a secret and
access a secret version. The secret name and the secret path is used in the
google_ml.create_sm_secret() SQL function.

2. Grant permissions to the AlloyDB cluster to access the secret.

gcloud secrets add-iam-policy-binding 'SECRET_ID' \
--member="serviceAccount:SERVICE_ACCOUNT_ID" \
--role="roles/secretmanager.secretAccessor"

Replace the following:
● : the secret ID in Secret Manager.
● : the ID of the service account that you created in the

previous step. Ensure that this is the same account you used during AlloyDB
Omni installation. This includes the full
.iam.gserviceaccount.com suffix—for example,
my-service@my-project.iam-gserviceaccount.com.

You can also grant this role to the service account at the project level. For more
information, see Add Identity and Access Management policy binding.

Text embedding models with built-in support

Did you find this document helpful? Please send us your feedback.

SECRET_ID
SERVICE_ACCOUNT_ID

PROJECT_ID

https://cloud.google.com/alloydb/docs/omni/install-with-alloydb-ai#with-cloud
https://cloud.google.com/alloydb/docs/omni/install-with-alloydb-ai#with-cloud
https://cloud.google.com/secret-manager/docs/create-secret-quickstart#create_a_secret_and_access_a_secret_version
https://cloud.google.com/secret-manager/docs/create-secret-quickstart#create_a_secret_and_access_a_secret_version
https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference#google_mlcreate_sm_secret
https://cloud.google.com/sdk/gcloud/reference/projects/add-iam-policy-binding
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

This section shows how to register models that the model endpoint management provides
built-in support for.

Vertex AI embedding models

The model endpoint management provides built-in support for all versions of the
text-embedding-gecko model by Vertex AI. Use the qualified name to set the model version
to either textembedding-gecko@001 or textembedding-gecko@002.

Since the textembedding-gecko and textembedding-gecko@001 model endpoint ID is
pre-registered with model endpoint management, you can directly use them as the model ID.
For these models, the extension automatically sets up default transform functions.

To register the textembedding-gecko@002 model version, complete the following steps:
1. Set up AlloyDB Omni to query cloud-based Vertex AI models.
2. Connect to your database using psql.
3. Create and enable the google_ml_integration extension. See "Enable the

extension" in this guide.
4. Call the create model function to add the textembedding-gecko@002 model:

CALL

google_ml.create_model(
model_id => 'textembedding-gecko@002',
model_provider => 'google',
model_qualified_name => 'textembedding-gecko@002',
model_type => 'text_embedding',
model_auth_type => 'alloydb_service_agent_iam');

The request URL that the function generates refers to the project
associated with the AlloyDB Omni service account. If you want to
refer to another project, then ensure that you specify the
`model_request_url` explicitly.

Open AI text embedding model

The model endpoint management provides built-in support for the text-embedding-ada-002
model by OpenAI. The google_ml_integration extension automatically sets up default
transform functions and invokes calls to the remote model.

The following example adds the text-embedding-ada-002 OpenAI model.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/omni/install-with-alloydb-ai#with-cloud
https://cloud.google.com/alloydb/docs/connect-psql
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

1. Connect to your database using psql.
2. Create and enable the google_ml_integration extension. See "Enable the

extension" in this guide.
3. Add the OpenAI API key as a secret to the Secret Manager for authentication. See "Set

up authentication for other model providers" in this guide.
4. Call the secret stored in the Secret Manager:

CALL

google_ml.create_sm_secret(
secret_id => 'SECRET_ID',
secret_path =>

'projects/PROJECT_ID/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSIO
N_NUMBER');

Replace the following:
● : the secret ID that you set and is subsequently used when

registering a model—for example, key1.
● : the secret ID set in Secret Manager when you

created the secret.
● : the ID of your Google Cloud project.
● : the version number of the secret ID.

5. Call the create model function to register the text-embedding-ada-002 model:

CALL

google_ml.create_model(
model_id => 'MODEL_ID',
model_provider => 'open_ai',
model_type => 'text_embedding',
model_qualified_name => 'text-embedding-ada-002',
model_auth_type => 'secret_manager',
model_auth => 'SECRET_ID');

Replace the following:

Did you find this document helpful? Please send us your feedback.

SECRET_ID

SECRET_MANAGER_SECRET_ID

PROJECT_ID
VERSION_NUMBER

https://cloud.google.com/alloydb/docs/connect-psql
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

● : a unique ID for the model that you define. This model ID is
referenced for metadata that the model needs to generate embeddings or invoke
predictions.

● : the secret ID you used earlier in the
google_ml.create_sm_secret() procedure.

For more information about generating embeddings, see " Generate vector embeddings with
model endpoint management" in this guide.

Other text embedding models
This section shows how to register any custom-hosted text embedding model or text embedding
models provided by model hosting providers. Based on your model metadata, you might need to
add transform functions, generate HTTP headers, or define endpoints.

Custom-hosted text embedding model

This section shows how to register a custom-hosted model along with creating transform
functions, and optionally, custom HTTP headers. AlloyDB Omni supports all custom-hosted
models regardless of where they are hosted.

The following example adds the custom-embedding-model custom model hosted by
Cymbal. The cymbal_text_input_transform and cymbal_text_output_transform
transform functions are used to transform the input and output format of the model to the input
and output format of the prediction function.

To register custom-hosted text embedding models, complete the following steps:
1. Connect to your database using psql.
2. Create and enable the google_ml_integration extension. See "Enable the

extension" in this guide.
3. Optional: Add the API key as a secret to the Secret Manager for authentication. See

"Custom-hosted text embedding model" in this guide.
4. Call the secret stored in the Secret Manager:

CALL

google_ml.create_sm_secret(
secret_id => 'SECRET_ID',
secret_path =>

Did you find this document helpful? Please send us your feedback.

MODEL_ID

SECRET_ID

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

'projects/project-id/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSIO
N_NUMBER');

Replace the following:
● : the secret ID that you set and is subsequently used when

registering a model—for example, key1.
● : the secret ID set in Secret Manager when you

created the secret.
● : the ID of your Google Cloud project.
● : the version number of the secret ID.

Note: Secret Manager generates an Authorization: Bearer
header for authentication by

default. If this format matches your model's authorization bearer token format,
then you don't have to generate auth headers using the header generation
function.

5. Create the input and output transform functions based on the following signature for the
prediction function for text embedding models. For more information about how to create
transform functions, see Transform functions example.

The following are example transform functions that are specific to the
custom-embedding-model text embedding model:

-- Input Transform Function corresponding to the custom model

CREATE OR REPLACE FUNCTION cymbal_text_input_transform(model_id
VARCHAR(100), input_text TEXT)
RETURNS JSON
LANGUAGE plpgsql
AS $$
DECLARE

transformed_input JSON;
model_qualified_name TEXT;

BEGIN
SELECT json_build_object('prompt',

Did you find this document helpful? Please send us your feedback.

SECRET_ID

SECRET_MANAGER_SECRET_ID

PROJECT_ID
VERSION_NUMBER

SECRET_VALUE_FROM_SECRET_MANAGER

https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference#transform-func-example
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

json_build_array(input_text))::JSON INTO transformed_input;
RETURN transformed_input;

END;
$$;
-- Output Transform Function corresponding to the custom model
CREATE OR REPLACE FUNCTION cymbal_text_output_transform(model_id
VARCHAR(100), response_json JSON)
RETURNS REAL[]
LANGUAGE plpgsql
AS $$
DECLARE

transformed_output REAL[];
BEGIN

SELECT ARRAY(SELECT json_array_elements_text(response_json->0))
INTO transformed_output;

RETURN transformed_output;
END;
$$;

6. Call the create model function to register the custom embedding model:

CALL

google_ml.create_model(
model_id => 'MODEL_ID',
model_request_url => 'REQUEST_URL',
model_provider => 'custom',
model_type => 'text_embedding',
model_auth_type => 'secret_manager',
model_auth_id => 'SECRET_ID',
model_qualified_name => 'MODEL_QUALIFIED_NAME',
model_in_transform_fn => 'cymbal_text_input_transform',
model_out_transform_fn => 'cymbal_text_output_transform');

Replace the following:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

● : required. A unique ID for the model that you define—for example,
custom-embedding-model. This model ID is referenced for metadata that the
model needs to generate embeddings or invoke predictions.

● : required. The model specific endpoint when adding custom text
embedding and generic models—for example,
https://cymbal.com/models/text/embeddings/v1.

● : required if your model uses a qualified name. The
fully qualified name in case the model has multiple versions.

● : the secret ID you used earlier in the
google_ml.create_sm_secret() procedure.

OpenAI Text Embedding 3 Small and Large models

You can register the OpenAI text-embedding-3-small and text-embedding-3-large
models using the embedding prediction function and transform functions specific to the model.
The following example shows how to register the OpenAI text-embedding-3-small model.

To register the text-embedding-3-small embedding model, do the following:

1. Connect to your database using psql.
2. Create and enable the google_ml_integration extension. See "Enable the

extension" in this guide.
3. Add the OpenAI API key as a secret to the Secret Manager for authentication. See "Set

up authentication for other model providers" in this guide. If you have already created a
secret for any other OpenAI model, then you can reuse the same secret.

4. Call the secret stored in the Secret Manager:

CALL

google_ml.create_sm_secret(
secret_id => 'SECRET_ID',_
secret_path =>

'projects/project-id/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSIO
N_NUMBER');

Replace the following:
● : the secret ID that you set and is subsequently used when

registering a model.
● : the secret ID set in Secret Manager when you

created the secret.

Did you find this document helpful? Please send us your feedback.

MODEL_ID

REQUEST_URL

MODEL_QUALIFIED_NAME

SECRET_ID

SECRET_ID

SECRET_MANAGER_SECRET_ID

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

● : the ID of your Google Cloud project.
● : the version number of the secret ID.

5. Create the input and output transform functions based on the following signature for the
prediction function for text embedding models. For more information about how to create
transform functions, see Transform functions example. To learn about the input and
output formats that OpenAI models expect, see Embeddings in the OpenAI
documentation.

The following are example transform functions for the text-embedding-ada-002,
text-embedding-3-small, and text-embedding-3-large OpenAI text
embedding models.

-- Input Transform Function corresponding to openai_text_embedding
model family

CREATE OR REPLACE FUNCTION openai_text_input_transform(model_id
VARCHAR(100), input_text TEXT)
RETURNS JSON
LANGUAGE plpgsql
AS $$
#variable_conflict use_variable
DECLARE

transformed_input JSON;
model_qualified_name TEXT;

BEGIN
SELECT google_ml.model_qualified_name_of(model_id) INTO

model_qualified_name;
SELECT json_build_object('input', input_text, 'model',

model_qualified_name)::JSON INTO transformed_input;
RETURN transformed_input;

END;
$$;

-- Output Transform Function corresponding to openai_text_embedding
model family
CREATE OR REPLACE FUNCTION openai_text_output_transform(model_id
VARCHAR(100), response_json JSON)
RETURNS REAL[]
LANGUAGE plpgsql

Did you find this document helpful? Please send us your feedback.

PROJECT_ID
VERSION_NUMBER

https://cloud.google.com/alloydb/docs/reference/model-endpoint-reference?db=shwetashetye-mem#transform-func-example
https://platform.openai.com/docs/api-reference/embeddings
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

AS $$
DECLARE

transformed_output REAL[];
BEGIN

SELECT ARRAY(SELECT
json_array_elements_text(response_json->'data'->0->'embedding'))
INTO transformed_output;

RETURN transformed_output;
END;
$$;

6. Call the create model function to register the text-embedding-3-small embedding
model:

CALL

google_ml.create_model(
model_id => 'MODEL_ID',
model_provider => 'open_ai',
model_type => 'text_embedding',
model_auth_type => 'secret_manager',
model_auth_id => 'SECRET_ID',
model_qualified_name => 'text-embedding-3-small',
model_in_transform_fn => 'openai_text_input_transform',
model_out_transform_fn => 'openai_text_output_transform');

Replace the following:
● : a unique ID for the model that you define—for example

openai-te-3-small. This model ID is referenced for metadata that the model
needs to generate embeddings or invoke predictions.

● : the secret ID you used earlier in the
google_ml.create_sm_secret() procedure.

For more information, see "Generate vector embeddings with model endpoint management" in
this guide.

Generic models

Did you find this document helpful? Please send us your feedback.

MODEL_ID

SECRET_ID

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

This section shows how to register any generic model that is available on a hosted model
provider such as Hugging Face, OpenAI, Vertex AI, or any other provider. This section shows
examples to register a generic model hosted on Hugging Face and a generic gemini-pro
model from Vertex AI Model Garden, which doesn't have built-in support.

You can register any generic model as long as the input and output is in the JSON format.
Based on your model metadata, you might need to generate HTTP headers or define endpoints.

Generic model on Hugging Face

The following example adds the facebook/bart-large-mnli custom classification model
hosted on Hugging Face.

1. Connect to your database using psql.
2. Create and enable the google_ml_integration extension. See "Enable the

extension" in this guide.
3. Add the bearer token as a secret to the Secret Manager for authentication. See "Set up

authentication for other model providers" in this guide.
4. Call the secret stored in Secret Manager:

CALL

google_ml.create_sm_secret(
secret_id => 'SECRET_ID',
secret_path =>

'projects/project-id/secrets/SECRE_MANAGER_SECRET_ID/versions/VERSION
_NUMBER');

Replace the following:
● : the secret ID that you set and that's subsequently used when

registering a model.
● : the secret ID set in Secret Manager when you

created the secret.
● : the ID of your Google Cloud project.
● : the version number of the secret ID.

5. Call the create model function to register the facebook/bart-large-mnli model:

CALL

Did you find this document helpful? Please send us your feedback.

SECRET_ID

SECRET_MANAGER_SECRET_ID

PROJECT_ID
VERSION_NUMBER

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

google_ml.create_model(
model_id => 'MODEL_ID',
model_provider => 'custom',
model_request_url => 'REQUEST_URL',
model_qualified_name => 'MODEL_QUALIFIED_NAME',
model_auth_type => 'secret_manager',
model_auth_id => 'SECRET_ID');

Replace the following:
● : a unique ID for the model that you define—for example,

custom-classification-model. This model ID is referenced for metadata
that the model needs to generate embeddings or invoke predictions.

● : the model specific endpoint when adding custom text
embedding and generic models—for example,
https://api-inference.huggingface.co/models/facebook/bart-la
rge-mnli.

● : the fully qualified name of the model version—for
example, facebook/bart-large-mnli.

● : the secret ID you used earlier in the
google_ml.create_sm_secret() procedure.

Gemini model

Ensure that you set up AlloyDB Omni to query cloud-based Vertex AI models.

The following example adds the gemini-1.0-pro model from the Vertex AI Model Garden.
1. Connect to your database using psql.
2. Create and enable the google_ml_integration extension. See "Enable the

extension" in this guide.
3. Call the create model function to register the gemini-1.0-pro model:

CALL

google_ml.create_model(
model_id => 'MODEL_ID',
model_request_url =>

'https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_I

Did you find this document helpful? Please send us your feedback.

MODEL_ID

REQUEST_URL

MODEL_QUALIFIED_NAME

SECRET_ID

https://cloud.google.com/alloydb/docs/omni/install-with-alloydb-ai#with-cloud
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

D/locations/us-central1/publishers/google/models/gemini-1.0-pro:stre
amGenerateContent',

model_provider => 'google',
model_auth_type => 'alloydb_service_agent_iam');

Replace the following:
● : a unique ID for the model that you define—for example, gemini-1.

This model ID is referenced for metadata that the model needs to generate
embeddings or invoke predictions.

● : the ID of your Google Cloud project.

For more information, see "Invoke predictions with model endpoint management" in this guide.

Generate vector embeddings with model endpoint management
This section describes a preview that lets you experiment with registering AI models and
invoking predictions with model endpoint management. For information about using AI models
in production environments, see Build generative AI applications using AlloyDB AI and Work
with vector embeddings.

After the models are added and registered with model endpoint management, you can
reference them using the model ID to generate embeddings.

Before you begin
Make sure that you have registered your model with model endpoint management. For more
information, see "Register a model with model endpoint management" in this guide.

Generate embeddings

Use the google_ml.embedding() SQL function to call the registered models with the text
embedding model type to generate embeddings.

To call the model and generate embeddings, use the following SQL query:

SELECT
google_ml.embedding(

model_id => 'MODEL_ID',
content => 'CONTENT');

Did you find this document helpful? Please send us your feedback.

MODEL_ID

PROJECT_ID

https://cloud.google.com/alloydb/docs/ai
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

Unset

Replace the following:
● : the model ID that you defined when registering the model.
● : the text to translate into a vector embedding.

Examples
Some examples for generating embeddings using registered models are listed in this section.

Text embedding models with in-built support

To generate embeddings for a registered textembedding-gecko@002 model, run the
following statement:

SELECT
google_ml.embedding(

model_id => 'textembedding-gecko@002',
content => 'AlloyDB is a managed, cloud-hosted SQL database

service');

To generate embeddings for a registered text-embedding-ada-002 model by OpenAI, run
the following statement:

SELECT
google_ml.embedding(

model_id => 'text-embedding-ada-002',
content => 'e-mail spam');

Other text embedding models

To generate embeddings for a registered text-embedding-3-small or
text-embedding-3-large models by OpenAI, run the following statement:

SELECT
google_ml.embedding(

model_id => 'text-embedding-3-small',
content => 'Vector embeddings in AI');

Did you find this document helpful? Please send us your feedback.

MODEL_ID
CONTENT

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

Unset

Invoke predictions with model endpoint management
This section describes a preview that lets you experiment with registering AI models and
invoking predictions with model endpoint management. For using AI models in production
environments, see Build generative AI applications using AlloyDB AI .

After the models are added and registered in model endpoint management, you can reference
them using the model ID to invoke predictions.

Before you begin
Make sure that you have registered your model with model endpoint management. For more
information, see "Register a model with model endpoint management" in this guide.

Invoke predictions for generic models

Use the google_ml.predict_row() SQL function to call a registered generic model to
invoke predictions. You can use google_ml.predict_row() function with any model type.

SELECT
google_ml.predict_row(

model_id => 'MODEL_ID',
request_body => 'REQUEST_BODY');

Replace the following:
● : the model ID you defined when registering the model.
● : the parameters to the prediction function, in JSON format.

Examples
Some examples for invoking predictions using registered models are listed in this section.

To generate predictions for a registered gemini-pro model, run the following statement:

SELECT
json_array_elements(
google_ml.predict_row(

model_id => 'gemini-pro',
request_body => '{

"contents": [
{

"role": "user",
"parts": [

Did you find this document helpful? Please send us your feedback.

MODEL_ID
REQUEST_BODY

https://cloud.google.com/alloydb/docs/ai
https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

Unset

{
"text": "For TPCH database schema as

mentioned here
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.
pdf , generate a SQL query to find all supplier names which are
located in the India nation."

}
]

}
]
}'))-> 'candidates' -> 0 -> 'content' -> 'parts' -> 0 ->

'text';

To generate predictions for a registered facebook/bart-large-mnli model on Hugging
Face, run the following statement:

SELECT
google_ml.predict_row(

model_id => 'facebook/bart-large-mnli',
request_body =>

'{
"inputs": "Hi, I recently bought a device from your company

but it is not working as advertised and I would like to get
reimbursed!",

"parameters": {"candidate_labels": ["refund", "legal", "faq"]}}
');

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1W6E-iP3gvzXRZUBmcWylQRZ4dWXEd9iPKLnaSGyWE5Q

