Getting started with AI Explanations for AI Platform

We have two sample notebooks to help you try out AI Explanations with AI Platform. One notebook demonstrates how to get feature attributions with tabular data, and the other notebook demonstrates how to get feature attributions with image data.

Before you begin

You must do several things before you can train and deploy a model in AI Platform:

  • Set up your local development environment.
  • Set up a GCP project with billing and the necessary APIs enabled.
  • Create a Cloud Storage bucket to store your training package and your trained model.

To set up your GCP project, follow the instructions provided in the sample notebooks.

Notebook environments

Each sample notebook can be run in the following notebook environments:

Sample notebooks

Each sample notebook demonstrates the end-to-end process of training a model, deploying it for inference, and getting predictions. Additionally, both notebooks show how to request and visualize explanations using the Explainable AI SDK and TensorFlow 2. To get started, select a sample notebook:

The original notebooks using TensorFlow 1.15 are still available:

The source for all notebooks is also available on GitHub.

What's next